These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36236742)
1. Data-Driven Predictive Control of Exoskeleton for Hand Rehabilitation with Subspace Identification. Kaplanoglu E; Akgun G Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236742 [TBL] [Abstract][Full Text] [Related]
2. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation. Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846 [TBL] [Abstract][Full Text] [Related]
3. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
4. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
5. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
6. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton. Jebri A; Madani T; Djouani K IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723 [TBL] [Abstract][Full Text] [Related]
7. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot]. Wang L; Hu X; Hu J; Fang Y; He R; Yu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415 [TBL] [Abstract][Full Text] [Related]
8. A Hybrid Arm-Hand Rehabilitation Robot With EMG-Based Admittance Controller. Xie C; Yang Q; Huang Y; Su S; Xu T; Song R IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1332-1342. PubMed ID: 34813476 [TBL] [Abstract][Full Text] [Related]
9. Self-Balancing Exoskeleton Robots Designed to Facilitate Multiple Rehabilitation Training Movements. Tian D; Li W; Li J; Li F; Chen Z; He Y; Sun J; Wu X IEEE Trans Neural Syst Rehabil Eng; 2024; 32():293-303. PubMed ID: 38163311 [TBL] [Abstract][Full Text] [Related]
10. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation]. Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106 [TBL] [Abstract][Full Text] [Related]
11. An Optimized Stimulation Control System for Upper Limb Exoskeleton Robot-Assisted Rehabilitation Using a Fuzzy Logic-Based Pain Detection Approach. Abdallah IB; Bouteraa Y Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400205 [TBL] [Abstract][Full Text] [Related]
12. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation. Pérez-San Lázaro R; Salgado I; Chairez I ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173 [TBL] [Abstract][Full Text] [Related]
13. Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor. Falkowski P; Jeznach K J Neuroeng Rehabil; 2024 Feb; 21(1):22. PubMed ID: 38342919 [TBL] [Abstract][Full Text] [Related]
14. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Zhang F; Fu Y; Zhang Q; Wang S Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062 [TBL] [Abstract][Full Text] [Related]
15. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
16. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation. Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528 [TBL] [Abstract][Full Text] [Related]
17. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related]
18. Active Neural Network Control for a Wearable Upper Limb Rehabilitation Exoskeleton Robot Driven by Pneumatic Artificial Muscles. Zhang H; Fan J; Qin Y; Tian M; Han J IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2589-2597. PubMed ID: 39012735 [TBL] [Abstract][Full Text] [Related]
19. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton. Wang W; He Y; Li F; Li J; Liu J; Wu X Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239 [TBL] [Abstract][Full Text] [Related]
20. Mechatronics design and testing of a cable-driven upper limb rehabilitation exoskeleton with variable stiffness. Li Z; Li W; Chen WH; Zhang J; Wang J; Fang Z; Yang G Rev Sci Instrum; 2021 Feb; 92(2):024101. PubMed ID: 33648137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]