These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36236839)

  • 1. High signal-noise ratio avalanche photodiodes with dynamic biasing technology for laser radar applications.
    Tian Y; Ding W; Feng X; Lin Z; Zhao Y
    Opt Express; 2022 Jul; 30(15):26484-26491. PubMed ID: 36236839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of dynamic biasing InGaAs/InAlAs avalanche photodiodes with different active areas.
    Lin Z; Tian Y; Zeng X; Yu X; Feng X; Ding W; Zhang H; Zhao Y
    Opt Express; 2023 Jul; 31(16):26245-26253. PubMed ID: 37710489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking the buildup-time limit of sensitivity in avalanche photodiodes by dynamic biasing.
    Hayat MM; Zarkesh-Ha P; El-Howayek G; Efroymson R; Campbell JC
    Opt Express; 2015 Sep; 23(18):24035-41. PubMed ID: 26368495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.
    Buchner A; Hadrath S; Burkard R; Kolb FM; Ruskowski J; Ligges M; Grabmaier A
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes.
    Cao S; Zhao Y; Feng S; Zuo Y; Zhang L; Cheng B; Li C
    Nanoscale Res Lett; 2019 Jan; 14(1):3. PubMed ID: 30607636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.
    Resetar T; De Munck K; Haspeslagh L; Rosmeulen M; Süss A; Puers R; Van Hoof C
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet Response in Coplanar Silicon Avalanche Photodiodes with CMOS Compatibility.
    Liu Q; Xu L; Jin Y; Zhang S; Wang Y; Hu A; Guo X
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays.
    Luu JX; Jiang LA
    Appl Opt; 2006 Jun; 45(16):3798-804. PubMed ID: 16724140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.
    Farrell AC; Senanayake P; Hung CH; El-Howayek G; Rajagopal A; Currie M; Hayat MM; Huffaker DL
    Sci Rep; 2015 Dec; 5():17580. PubMed ID: 26627932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High gain and low excess noise InGaAs/InP avalanche photodiode with lateral impact ionization.
    Wang R; Tian Y; Li Q; Zhao Y
    Appl Opt; 2020 Mar; 59(7):1980-1984. PubMed ID: 32225716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on the optimal optical attenuation in a laser radar using a Geiger-mode APD.
    Li Z; Lai J; Wang C; Yan W; Li Z
    Appl Opt; 2018 Sep; 57(26):7415-7426. PubMed ID: 30461806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. III-V on silicon avalanche photodiodes by heteroepitaxy.
    Yuan Y; Jung D; Sun K; Zheng J; Jones AH; Bowers JE; Campbell JC
    Opt Lett; 2019 Jul; 44(14):3538-3541. PubMed ID: 31305567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of thin InAlAs digital alloy avalanche photodiodes.
    Wang W; Yao J; Wang J; Deng Z; Xie Z; Huang J; Lu H; Chen B
    Opt Lett; 2021 Aug; 46(16):3841-3844. PubMed ID: 34388755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product.
    Hayat MM; Ramirez DA
    Opt Express; 2012 Mar; 20(7):8024-40. PubMed ID: 22453474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Few-photon detection using InAs avalanche photodiodes.
    Tan CH; Velichko A; Lim LW; Ng JS
    Opt Express; 2019 Feb; 27(4):5835-5842. PubMed ID: 30876178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes.
    Cao S; Zhao Y; Ur Rehman S; Feng S; Zuo Y; Li C; Zhang L; Cheng B; Wang Q
    Nanoscale Res Lett; 2018 May; 13(1):158. PubMed ID: 29785568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free-Space Optical Data Receivers with Avalanche Detectors for Satellite Downlinks Regarding Background Light.
    Giggenbach D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of InGaAs/InAlAs Avalanche Photodiodes.
    Chen J; Zhang Z; Zhu M; Xu J; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):33. PubMed ID: 28091945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm.
    Kopytko M; Sobieski J; Gawron W; Martyniuk P
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error performance analysis of a non-ideal photon counting array receiver system for optical wireless communication.
    Wang C; Wang J; Xu Z; Wang R; Zhao J; Wei Y
    Appl Opt; 2018 Aug; 57(23):6651-6656. PubMed ID: 30129608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.