These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36236942)

  • 1. Resonance fluorescence engineering in hybrid systems consist of biexciton quantum dots and anisotropic metasurfaces.
    Fang W; Ou C; Li GX; Yang Y
    Opt Express; 2022 Jul; 30(15):27794-27811. PubMed ID: 36236942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable radiation properties of a driven exciton-biexciton quantum dot couples to a graphene sheet.
    Fang W; Li GX; Yang Y
    Opt Express; 2018 Oct; 26(22):29561-29587. PubMed ID: 30470118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional dipole radiations and long-range quantum entanglement mediated by hyperbolic metasurfaces.
    Fang W; Yang Y
    Opt Express; 2020 Oct; 28(22):32955-32977. PubMed ID: 33114969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Linear Optical Properties of Biexciton in Ellipsoidal Quantum Dot.
    Bleyan YY; Mantashyan PA; Kazaryan EM; Sarkisyan HA; Accorsi G; Baskoutas S; Hayrapetyan DB
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manifestation of unconventional biexciton states in quantum dots.
    Hönig G; Callsen G; Schliwa A; Kalinowski S; Kindel C; Kako S; Arakawa Y; Bimberg D; Hoffmann A
    Nat Commun; 2014 Dec; 5():5721. PubMed ID: 25514472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots.
    Kaniber M; Huck MF; Müller K; Clark EC; Troiani F; Bichler M; Krenner HJ; Finley JJ
    Nanotechnology; 2011 Aug; 22(32):325202. PubMed ID: 21772067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Anisotropic Excitonic Optical Nanoantennas.
    Kang ESH; Kk S; Jeon I; Kim J; Chen S; Kim KH; Kim KH; Lee HS; Westerlund F; Jonsson MP
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201907. PubMed ID: 35619287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces.
    Liang Y; Koshelev K; Zhang F; Lin H; Lin S; Wu J; Jia B; Kivshar Y
    Nano Lett; 2020 Sep; 20(9):6351-6356. PubMed ID: 32479094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.
    Ozel T; Nizamoglu S; Sefunc MA; Samarskaya O; Ozel IO; Mutlugun E; Lesnyak V; Gaponik N; Eychmuller A; Gaponenko SV; Demir HV
    ACS Nano; 2011 Feb; 5(2):1328-34. PubMed ID: 21247187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proposed robust and high-fidelity preparation of excitons and biexcitons in semiconductor quantum dots making active use of phonons.
    Glässl M; Barth AM; Axt VM
    Phys Rev Lett; 2013 Apr; 110(14):147401. PubMed ID: 25167035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperbolic Shear Metasurfaces.
    Renzi EM; Galiffi E; Ni X; Alù A
    Phys Rev Lett; 2024 Jun; 132(26):263803. PubMed ID: 38996284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized emission of quantum dots in microcavity and anisotropic Purcell factors.
    Lee YS; Lin SD
    Opt Express; 2014 Jan; 22(2):1512-23. PubMed ID: 24515158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity.
    Johne R; Gippius NA; Pavlovic G; Solnyshkov DD; Shelykh IA; Malpuech G
    Phys Rev Lett; 2008 Jun; 100(24):240404. PubMed ID: 18643557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strongly Coupled Exciton-Surface Lattice Resonances Engineer Long-Range Energy Propagation.
    Yadav RK; Otten M; Wang W; Cortes CL; Gosztola DJ; Wiederrecht GP; Gray SK; Odom TW; Basu JK
    Nano Lett; 2020 Jul; 20(7):5043-5049. PubMed ID: 32470309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus.
    Wang F; Wang C; Chaves A; Song C; Zhang G; Huang S; Lei Y; Xing Q; Mu L; Xie Y; Yan H
    Nat Commun; 2021 Sep; 12(1):5628. PubMed ID: 34561443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic responses in Janus bAsP with elliptic-to-hyperbolic transition: an ab-initio study.
    Han ZL; Zhou Y
    Opt Express; 2023 Nov; 31(23):39063-39078. PubMed ID: 38017995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced near-field coupling and tunable topological transitions in hyperbolic van der Waals metasurfaces for optical nanomanipulation.
    Wang X; Chang K; Liu W; Wang H; Chen J; Liu K; Chen J; Chen K
    Nanoscale; 2022 May; 14(18):7075-7082. PubMed ID: 35475504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal.
    Ma W; Alonso-González P; Li S; Nikitin AY; Yuan J; Martín-Sánchez J; Taboada-Gutiérrez J; Amenabar I; Li P; Vélez S; Tollan C; Dai Z; Zhang Y; Sriram S; Kalantar-Zadeh K; Lee ST; Hillenbrand R; Bao Q
    Nature; 2018 Oct; 562(7728):557-562. PubMed ID: 30356185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.