These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36236972)

  • 1. Achieving sub-nanometer roughness on aspheric optical mold by non-contact polishing using damping-clothed tool.
    Zhang P; Li L; Yang Z; Pan B; Zhang M; Guo X; Li G; Kim D; Guo J
    Opt Express; 2022 Jul; 30(15):28190-28206. PubMed ID: 36236972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrective finishing of a micro-aspheric mold made of tungsten carbide to 50  nm accuracy.
    Guo J
    Appl Opt; 2015 Jun; 54(18):5764-70. PubMed ID: 26193027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High Efficiency and Precision Smoothing Polishing Method for NiP Coating of Metal Mirror.
    Xu C; Peng X; Liu J; Hu H; Lai T; Yang Q; Xiong Y
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-precision turning and ultra-smooth direct polishing of aluminum alloy mirrors.
    Song P; Yang C; Bai Y; Ding J; Guo J; Li C; Wang Y; Xue C
    Opt Express; 2023 Sep; 31(19):30340-30358. PubMed ID: 37710578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Quality Control Strategy of Aspherical Mold Based on Screw Feed Polishing of Small Polishing Tool.
    Zhang J; Wang H; Zhu X; Yao H; Zhuo S; Ma S; Zhan D; Cai N
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Disc Hydrodynamic Polishing Process and Tool for High-Efficiency Polishing of Ultra-Smooth Surfaces.
    Lin B; Jiang XM; Cao ZC; Li Y
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of parameters on surface roughness during the ultra-precision polishing of titanium alloy.
    Lou Y; Wu H
    PLoS One; 2022; 17(8):e0272387. PubMed ID: 35913977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-Precision Processing of NiP Coating by Magnetorheological Finishing.
    Xu C; Peng X; Hu H; Liu J; Li H; Luo T; Lai T
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro Aspheric Convex Lenses Fabricated by Precise Scraping.
    Lin MJ
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High precision polishing of aluminum alloy mirrors through a combination of magnetorheological finishing and chemical mechanical polishing.
    Bai Y; Zhang Z; Li L; Luo X; Li F; Zhang X
    Opt Express; 2024 Apr; 32(9):15813-15826. PubMed ID: 38859222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Machining Errors on Optical Performance of Optical Aspheric Components in Ultra-Precision Diamond Turning.
    Li Y; Zhang Y; Lin J; Yi A; Zhou X
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32210145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-precision fabrication of a nickel-phosphorus layer on aluminum substrate by SPDT and MRF.
    Bai Y; Zhang Z; Xue D; Zhang X
    Appl Opt; 2018 Dec; 57(34):F62-F67. PubMed ID: 30645271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing.
    Du C; Dai Y; Guan C; Hu H
    Opt Express; 2021 Feb; 29(3):3738-3753. PubMed ID: 33770967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the Magnetorheological Finishing Technology of a High-Steepness Optical Element Based on the Virtual-Axis and Spiral Scanning Path.
    Chen C; Guan C; Liu M; Dai Y; Hu H
    Micromachines (Basel); 2024 Sep; 15(9):. PubMed ID: 39337814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of high-precision freeform surface on die steel by ultrasonic-assisted slow tool servo.
    Xing Y; Li C; Liu Y; Yang C; Xue C
    Opt Express; 2021 Feb; 29(3):3708-3723. PubMed ID: 33770965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Method of Restraining the Adverse Effects of Grinding Marks on Small Aperture Aspheric Mirrors.
    Bao J; Peng X; Hu H; Lai T
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process Chain for Ultra-Precision and High-Efficiency Manufacturing of Large-Aperture Silicon Carbide Aspheric Mirrors.
    Zhong B; Wu W; Wang J; Zhou L; Hou J; Ji B; Deng W; Wei Q; Wang C; Xu Q
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness.
    Chen X; Liu W; Dong B; Lee J; Ware HOT; Zhang HF; Sun C
    Adv Mater; 2018 May; 30(18):e1705683. PubMed ID: 29573485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Binder during Ultra-Precision Polishing of Tungsten Carbide Using a Semirigid Bonnet Tool.
    Ke X; Wu W; Li K; Yu Y; Wang T; Zhong B; Wang Z; Guo J; Wang C
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of aspherical polymeric lenses using tunable ferrogel molds.
    Falahati M; Chang YC; Ahmadvand P; Zhou W; Yi A; Li L
    Appl Opt; 2020 Mar; 59(8):2632-2640. PubMed ID: 32225808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.