These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36237059)

  • 1. Quantum fisher information of an optomechanical force sensor driven by a squeezed vacuum field.
    Lee CW; Lee JH; Joo J; Seok H
    Opt Express; 2022 Jul; 30(14):25249-25261. PubMed ID: 36237059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squeezed-light-driven force detection with an optomechanical cavity in a Mach-Zehnder interferometer.
    Lee CW; Lee JH; Seok H
    Sci Rep; 2020 Oct; 10(1):17496. PubMed ID: 33060770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-classical light generated by quantum-noise-driven cavity optomechanics.
    Brooks DW; Botter T; Schreppler S; Purdy TP; Brahms N; Stamper-Kurn DM
    Nature; 2012 Aug; 488(7412):476-80. PubMed ID: 22895194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.
    Wade AR; Mansell GL; McRae TG; Chua SS; Yap MJ; Ward RL; Slagmolen BJ; Shaddock DA; McClelland DE
    Rev Sci Instrum; 2016 Jun; 87(6):063104. PubMed ID: 27370423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum simulation of tunable and ultrastrong mixed-optomechanics.
    Zhou YH; Yin XL; Liao JQ
    Opt Express; 2021 Aug; 29(18):28202-28216. PubMed ID: 34614957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Squeezed vacuum interaction with an optomechanical cavity containing a quantum well.
    Jabri H; Eleuch H
    Sci Rep; 2022 Mar; 12(1):3658. PubMed ID: 35256636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the force sensitivity of a squeezed light optomechanical interferometer.
    Subhash S; Das S; Dey TN; Li Y; Davuluri S
    Opt Express; 2023 Jan; 31(1):177-191. PubMed ID: 36606959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits.
    Garcés R; de Valcárcel GJ
    Sci Rep; 2016 Feb; 6():21964. PubMed ID: 26916946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sideband cooling beyond the quantum backaction limit with squeezed light.
    Clark JB; Lecocq F; Simmonds RW; Aumentado J; Teufel JD
    Nature; 2017 Jan; 541(7636):191-195. PubMed ID: 28079081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supersensitive estimation of the coupling rate in cavity optomechanics with an impurity-doped Bose-Einstein condensate.
    Tan QS; Yuan JB; Liao JQ; Kuang LM
    Opt Express; 2020 Jul; 28(15):22867-22881. PubMed ID: 32752540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors.
    Zhao Y; Aritomi N; Capocasa E; Leonardi M; Eisenmann M; Guo Y; Polini E; Tomura A; Arai K; Aso Y; Huang YC; Lee RK; Lück H; Miyakawa O; Prat P; Shoda A; Tacca M; Takahashi R; Vahlbruch H; Vardaro M; Wu CM; Barsuglia M; Flaminio R
    Phys Rev Lett; 2020 May; 124(17):171101. PubMed ID: 32412296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light.
    Dwyer S; Barsotti L; Chua SS; Evans M; Factourovich M; Gustafson D; Isogai T; Kawabe K; Khalaidovski A; Lam PK; Landry M; Mavalvala N; McClelland DE; Meadors GD; Mow-Lowry CM; Schnabel R; Schofield RM; Smith-Lefebvre N; Stefszky M; Vorvick C; Sigg D
    Opt Express; 2013 Aug; 21(16):19047-60. PubMed ID: 23938820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the phase sensitivity with two-mode squeezed coherent state based on a Mach-Zehnder interferometer.
    Liu J; Shao T; Wang Y; Zhang M; Hu Y; Chen D; Wei D
    Opt Express; 2023 Aug; 31(17):27735-27748. PubMed ID: 37710842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezed optomechanics with phase-matched amplification and dissipation.
    Lü XY; Wu Y; Johansson JR; Jing H; Zhang J; Nori F
    Phys Rev Lett; 2015 Mar; 114(9):093602. PubMed ID: 25793814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optomechanical squeezing with pulse modulation.
    Xiong B; Chao S; Shan C; Liu J
    Opt Lett; 2022 Nov; 47(21):5545-5548. PubMed ID: 37219265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum optomechanics without the radiation pressure force noise.
    Davuluri S
    Opt Lett; 2021 Feb; 46(4):904-907. PubMed ID: 33577544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ponderomotive Squeezing of Light by a Levitated Nanoparticle in Free Space.
    Militaru A; Rossi M; Tebbenjohanns F; Romero-Isart O; Frimmer M; Novotny L
    Phys Rev Lett; 2022 Jul; 129(5):053602. PubMed ID: 35960561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Phase Transitions in Optomechanical Systems.
    Wang B; Nori F; Xiang ZL
    Phys Rev Lett; 2024 Feb; 132(5):053601. PubMed ID: 38364134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of the radiative decay of atomic coherence in squeezed vacuum.
    Murch KW; Weber SJ; Beck KM; Ginossar E; Siddiqi I
    Nature; 2013 Jul; 499(7456):62-5. PubMed ID: 23823794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum enhanced electro-optic sensor for E-field measurement.
    Liu S; Chen Y; Jiang J; Wu Y; Guo J; Chen LQ
    Opt Express; 2021 Oct; 29(21):32865-32874. PubMed ID: 34809109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.