These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36237076)

  • 1. Imperfection-insensitivity quantum random number generator with untrusted daily illumination.
    Lin X; Wang R; Wang S; Yin ZQ; Chen W; He DY; Zhou Z; Guo GC; Han ZF
    Opt Express; 2022 Jul; 30(14):25474-25485. PubMed ID: 36237076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical security analysis of a continuous-variable source-independent quantum random number generator based on heterodyne detection.
    Li Y; Fei Y; Wang W; Meng X; Wang H; Duan Q; Han Y; Ma Z
    Opt Express; 2023 Jul; 31(15):23813-23829. PubMed ID: 37475223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum random number generator using a cloud superconducting quantum computer based on source-independent protocol.
    Li Y; Fei Y; Wang W; Meng X; Wang H; Duan Q; Ma Z
    Sci Rep; 2021 Dec; 11(1):23873. PubMed ID: 34903802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Certified Randomness from Untrusted Sources and Uncharacterized Measurements.
    Lin X; Wang R; Wang S; Yin ZQ; Chen W; Guo GC; Han ZF
    Phys Rev Lett; 2022 Jul; 129(5):050506. PubMed ID: 35960590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Provably-secure quantum randomness expansion with uncharacterised homodyne detection.
    Wang C; Primaatmaja IW; Ng HJ; Haw JY; Ho R; Zhang J; Zhang G; Lim C
    Nat Commun; 2023 Jan; 14(1):316. PubMed ID: 36658115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. True random numbers from amplified quantum vacuum.
    Jofre M; Curty M; Steinlechner F; Anzolin G; Torres JP; Mitchell MW; Pruneri V
    Opt Express; 2011 Oct; 19(21):20665-72. PubMed ID: 21997077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of a Quantum Random Generator Certified with the Kochen-Specker Theorem.
    Kulikov A; Jerger M; Potočnik A; Wallraff A; Fedorov A
    Phys Rev Lett; 2017 Dec; 119(24):240501. PubMed ID: 29286749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information.
    Gehring T; Lupo C; Kordts A; Solar Nikolic D; Jain N; Rydberg T; Pedersen TB; Pirandola S; Andersen UL
    Nat Commun; 2021 Jan; 12(1):605. PubMed ID: 33504789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source-device-independent heterodyne-based quantum random number generator at 17 Gbps.
    Avesani M; Marangon DG; Vallone G; Villoresi P
    Nat Commun; 2018 Dec; 9(1):5365. PubMed ID: 30560900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum random number generation based on phase reconstruction.
    Li J; Huang Z; Yu C; Wu J; Zhao T; Zhu X; Sun S
    Opt Express; 2024 Feb; 32(4):5056-5071. PubMed ID: 38439242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum random number generator with discarding-boundary-bin measurement and multi-interval sampling.
    Lu Z; Liu J; Wang X; Wang P; Li Y; Peng K
    Opt Express; 2021 Apr; 29(8):12440-12453. PubMed ID: 33985003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast quantum random number generation based on quantum phase fluctuations.
    Xu F; Qi B; Ma X; Xu H; Zheng H; Lo HK
    Opt Express; 2012 May; 20(11):12366-77. PubMed ID: 22714224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum randomness introduced through squeezing operations and random number generation.
    Cheng J; Liang S; Qin J; Li J; Zeng B; Shi Y; Yan Z; Jia X
    Opt Express; 2024 May; 32(10):18237-18246. PubMed ID: 38858985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple low-latency real-time certifiable quantum random number generator.
    Zhang Y; Lo HP; Mink A; Ikuta T; Honjo T; Takesue H; Munro WJ
    Nat Commun; 2021 Feb; 12(1):1056. PubMed ID: 33627660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction.
    Zhang XG; Nie YQ; Zhou H; Liang H; Ma X; Zhang J; Pan JW
    Rev Sci Instrum; 2016 Jul; 87(7):076102. PubMed ID: 27475609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a High Min-Entropy Quantum Random Number Generator Based on Amplified Spontaneous Emission.
    Duda CK; Meier KA; Newell RT
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimentally generated randomness certified by the impossibility of superluminal signals.
    Bierhorst P; Knill E; Glancy S; Zhang Y; Mink A; Jordan S; Rommal A; Liu YK; Christensen B; Nam SW; Stevens MJ; Shalm LK
    Nature; 2018 Apr; 556(7700):223-226. PubMed ID: 29643486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed and Large-scale Privacy Amplification Scheme for Quantum Key Distribution.
    Tang BY; Liu B; Zhai YP; Wu CQ; Yu WR
    Sci Rep; 2019 Oct; 9(1):15733. PubMed ID: 31673000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response.
    Stipčević M; Ursin R
    Sci Rep; 2015 Jun; 5():10214. PubMed ID: 26057576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tight finite-key analysis for quantum cryptography.
    Tomamichel M; Lim CC; Gisin N; Renner R
    Nat Commun; 2012 Jan; 3():634. PubMed ID: 22252558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.