These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36237084)

  • 1. Impedance matching via ultrathin metatronic layer assisted by Smith Chart.
    Sun W; Qin X; Li H; Zhou Z; Li Y
    Opt Express; 2022 Jul; 30(14):25567-25580. PubMed ID: 36237084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveguide metatronics: Lumped circuitry based on structural dispersion.
    Li Y; Liberal I; Della Giovampaola C; Engheta N
    Sci Adv; 2016 Jun; 2(6):e1501790. PubMed ID: 27386566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative capacitors and inductors enabling wideband waveguide metatronics.
    Qin X; Fu P; Yan W; Wang S; Lv Q; Li Y
    Nat Commun; 2023 Nov; 14(1):7041. PubMed ID: 37923715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials.
    Engheta N
    Science; 2007 Sep; 317(5845):1698-702. PubMed ID: 17885123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks.
    Abbasi F; Engheta N
    Opt Express; 2014 Oct; 22(21):25109-19. PubMed ID: 25401543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects.
    Tittl A; Harats MG; Walter R; Yin X; Schäferling M; Liu N; Rapaport R; Giessen H
    ACS Nano; 2014 Oct; 8(10):10885-92. PubMed ID: 25251075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors.
    Engheta N; Salandrino A; Alù A
    Phys Rev Lett; 2005 Aug; 95(9):095504. PubMed ID: 16197226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared metatronic nanocircuits by design.
    Caglayan H; Hong SH; Edwards B; Kagan CR; Engheta N
    Phys Rev Lett; 2013 Aug; 111(7):073904. PubMed ID: 23992069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption.
    Wang T; Chen G; Zhu J; Gong H; Zhang L; Wu H
    J Colloid Interface Sci; 2021 Aug; 595():1-5. PubMed ID: 33813219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance matching and emission properties of nanoantennas in an optical nanocircuit.
    Huang JS; Feichtner T; Biagioni P; Hecht B
    Nano Lett; 2009 May; 9(5):1897-902. PubMed ID: 19338279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental realization of optical lumped nanocircuits at infrared wavelengths.
    Sun Y; Edwards B; Alù A; Engheta N
    Nat Mater; 2012 Jan; 11(3):208-12. PubMed ID: 22286335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths.
    Park MS; Bhattarai K; Kim DK; Kang SW; Kim JO; Zhou J; Jang WY; Noyola M; Urbas A; Ku Z; Lee SJ
    Opt Express; 2014 Dec; 22(24):30161-9. PubMed ID: 25606946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel multi-layer polymer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications.
    Toda M; Thompson M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2818-27. PubMed ID: 21156377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the Scattering Response of Optical Nanocircuits Using Modular Assembly.
    Farooq S; Shafique S; Ahsan Z; Cardozo O; Wali F
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buried nanoantenna arrays: versatile antireflection coating.
    Kabiri A; Girgis E; Capasso F
    Nano Lett; 2013; 13(12):6040-7. PubMed ID: 24266700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety of active catheters in MRI: Termination impedance versus RF-induced heating.
    Özen AC; Lottner T; Bock M
    Magn Reson Med; 2019 Feb; 81(2):1412-1423. PubMed ID: 30346056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces.
    Chu H; Zhang H; Zhang Y; Peng R; Wang M; Hao Y; Lai Y
    Nat Commun; 2021 Jul; 12(1):4523. PubMed ID: 34312380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband electrical impedance matching for piezoelectric ultrasound transducers.
    Huang H; Paramo D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2699-707. PubMed ID: 23443705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance matching network for high frequency ultrasonic transducer for cellular applications.
    Kim MG; Yoon S; Kim HH; Shung KK
    Ultrasonics; 2016 Feb; 65():258-67. PubMed ID: 26442434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.