These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3623767)

  • 1. Thermal effects of polymerization of methyl-methacrylate on small tubular bones.
    Schultz RJ; Johnston AD; Krishnamurthy S
    Int Orthop; 1987; 11(3):277-82. PubMed ID: 3623767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consideration of physical parameters to predict thermal necrosis in acrylic cement implants at the site of giant cell tumors of bone.
    Nelson CG; Krishnan EC; Neff JR
    Med Phys; 1986; 13(4):462-8. PubMed ID: 3736503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl methacrylate concentrations in tissues adjacent to bone cement.
    Petty W
    J Biomed Mater Res; 1980 Jul; 14(4):427-34. PubMed ID: 7400196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat generation and heat protection in methylmethacrylate cementation of vertebral bodies. A cadaver study evaluating different clinical possibilities of dural protection from heat during cement curing.
    Toksvig-Larsen S; Johnsson R; Strömqvist B
    Eur Spine J; 1995; 4(1):15-7. PubMed ID: 7749900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Adhesive strength of metal/bone cement compounds and bone cement/spongioid bones].
    Klumpert R; Pauly T; Grootenboer HJ
    Aktuelle Probl Chir Orthop; 1987; 31():125-8. PubMed ID: 2888331
    [No Abstract]   [Full Text] [Related]  

  • 6. Thermal aspects of self-curing polymethylmethacrylate.
    Jefferiss CD; Lee AJ; Ling RS
    J Bone Joint Surg Br; 1975 Nov; 57(4):511-8. PubMed ID: 1194321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Experimental studies on heat development in bone during polymerization of bone cement. Intraoperative measurement of temperature in normal blood circulation and in bloodlessness].
    Biehl G; Harms J; Hanser U
    Arch Orthop Unfallchir; 1974; 78(1):62-9. PubMed ID: 4840885
    [No Abstract]   [Full Text] [Related]  

  • 8. [Histological examinations of remodelling proceedings on the cement-bone surface of endoprosthesis after implantation from 3-10 years ].
    Lintner F; Bösch P; Brand G
    Pathol Res Pract; 1982; 173(4):376-89. PubMed ID: 6750580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of heating from an acrylic implant in bone.
    Peng L; Nelson DA
    Biomed Sci Instrum; 1991; 27():253-61. PubMed ID: 2065163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of polymerization heat and monomers from acrylic cement on canine bone.
    Stürup J; Nimb L; Kramhøft M; Jensen JS
    Acta Orthop Scand; 1994 Feb; 65(1):20-3. PubMed ID: 8154277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the heat of reaction transmitted intracranially during polymerization of methylmethacrylate cranial bone cement used in stabilization of the fossa component of an alloplastic temporomandibular joint prosthesis.
    Mercuri LG
    Oral Surg Oral Med Oral Pathol; 1992 Aug; 74(2):137-42. PubMed ID: 1508519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical strength of poly(methyl methacrylate) cement-human bone interfaces.
    Kusleika R; Stupp SI
    J Biomed Mater Res; 1983 May; 17(3):441-58. PubMed ID: 6863348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A study on the mechanical properties of bone cement (methylmethacrylate) and its strength alteration in vivo (author's transl)].
    Kon H
    Nihon Seikeigeka Gakkai Zasshi; 1981 Jan; 55(1):71-83. PubMed ID: 7276662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bone-cement interface temperature during total joint replacement.
    Reckling FW; Dillon WL
    J Bone Joint Surg Am; 1977 Jan; 59(1):80-2. PubMed ID: 833181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally induced bone necrosis in rabbits. Relation to implant failure in humans.
    Berman AT; Reid JS; Yanicko DR; Sih GC; Zimmerman MR
    Clin Orthop Relat Res; 1984 Jun; (186):284-92. PubMed ID: 6723155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of new bone cement utilizing low toxicity monomers.
    Ono S; Kadoma Y; Morita S; Takakuda K
    J Med Dent Sci; 2008 Jun; 55(2):189-96. PubMed ID: 19697507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature in the interface between bone and acrylic bone-cement.
    Taoka H; Kinoshita I; Morimoto H; Sasaki T; Ogawa Y; Shimakawa T
    Tokushima J Exp Med; 1980 Dec; 27(3-4):89-92. PubMed ID: 7256747
    [No Abstract]   [Full Text] [Related]  

  • 18. A method for bone-cement interface thermometry. An in vitro comparison between low temperature curing cement Palavit, and Surgical Simplex P.
    Harving S; Søballe K; Bünger C
    Acta Orthop Scand; 1991 Dec; 62(6):546-8. PubMed ID: 1767645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polymethyl methacrylate method for large specimens of mineralized bone with implants.
    Emmanual J; Hornbeck C; Bloebaum RD
    Stain Technol; 1987 Nov; 62(6):401-10. PubMed ID: 3433310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone embedding in pure methyl methacrylate at low temperature preserves enzyme activities.
    Chappard D; Palle S; Alexandre C; Vico L; Riffat G
    Acta Histochem; 1987; 81(2):183-90. PubMed ID: 3111154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.