BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 36238101)

  • 1. Ligands modification strategies for mononuclear water splitting catalysts.
    Wang L; Wang L
    Front Chem; 2022; 10():996383. PubMed ID: 36238101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction.
    Zhu B; Liang Z; Zou R
    Small; 2020 Feb; 16(7):e1906133. PubMed ID: 31913584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric Carbon Nitride-Derived Photocatalysts for Water Splitting and Nitrogen Fixation.
    Zhang D; He W; Ye J; Gao X; Wang D; Song J
    Small; 2021 Apr; 17(13):e2005149. PubMed ID: 33690963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Ligand Carboxylates on Electrocatalyzed Water Oxidation.
    Das B; Rahaman A; Shatskiy A; Verho O; Kärkäs MD; Åkermark B
    Acc Chem Res; 2021 Sep; 54(17):3326-3337. PubMed ID: 34488345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What can density functional theory tell us about artificial catalytic water splitting?
    Mavros MG; Tsuchimochi T; Kowalczyk T; McIsaac A; Wang LP; Voorhis TV
    Inorg Chem; 2014 Jul; 53(13):6386-97. PubMed ID: 24694041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guiding Principles for Designing Highly Efficient Metal-Free Carbon Catalysts.
    Zhang L; Lin CY; Zhang D; Gong L; Zhu Y; Zhao Z; Xu Q; Li H; Xia Z
    Adv Mater; 2019 Mar; 31(13):e1805252. PubMed ID: 30536475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-Based Molecular Water Oxidation Catalysts: Abundant, Cheap, and Promising.
    Liu T; Zhang B; Sun L
    Chem Asian J; 2019 Jan; 14(1):31-43. PubMed ID: 30362258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ru-bda: Unique Molecular Water-Oxidation Catalysts with Distortion Induced Open Site and Negatively Charged Ligands.
    Zhang B; Sun L
    J Am Chem Soc; 2019 Apr; 141(14):5565-5580. PubMed ID: 30889353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand modification transforms a catalase mimic into a water oxidation catalyst.
    Lee WT; Muñoz SB; Dickie DA; Smith JM
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9856-9. PubMed ID: 25044487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks.
    Kärkäs MD; Åkermark B
    Chem Rec; 2016 Apr; 16(2):940-63. PubMed ID: 26991306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing Self-Supported Metal-Organic Framework Derived Catalysts for Electrochemical Water Splitting.
    Singh B; Indra A
    Chem Asian J; 2020 Mar; 15(6):607-623. PubMed ID: 32017410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand Substituents Govern the Efficiency and Mechanistic Path of Hydrogen Production with [Cp*Rh] Catalysts.
    Henke WC; Lionetti D; Moore WNG; Hopkins JA; Day VW; Blakemore JD
    ChemSusChem; 2017 Nov; 10(22):4589-4598. PubMed ID: 29024563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mono-/Multinuclear Water Oxidation Catalysts.
    Zhang Q; Guan J
    ChemSusChem; 2019 Jul; 12(14):3209-3235. PubMed ID: 31077565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron Pentapyridyl Complexes as Molecular Water Oxidation Catalysts: Strong Influence of a Chloride Ligand and pH in Altering the Mechanism.
    Das B; Orthaber A; Ott S; Thapper A
    ChemSusChem; 2016 May; 9(10):1178-86. PubMed ID: 27114078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial photosynthesis: opportunities and challenges of molecular catalysts.
    Zhang B; Sun L
    Chem Soc Rev; 2019 Apr; 48(7):2216-2264. PubMed ID: 30895997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Photosynthesis with Polymeric Carbon Nitride: When Meeting Metal Nanoparticles, Single Atoms, and Molecular Complexes.
    Li Y; Kong T; Shen S
    Small; 2019 Aug; 15(32):e1900772. PubMed ID: 30977981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.