These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3623819)

  • 41. Hitting moving targets: effects of target speed and dimensions on movement time.
    Brouwer AM; Smeets JB; Brenner E
    Exp Brain Res; 2005 Aug; 165(1):28-36. PubMed ID: 15868174
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Learning to write letters: transfer in automated movements indicates modularity of motor programs in human subjects.
    Kharraz-Tavakol OD; Eggert T; Mai N; Straube A
    Neurosci Lett; 2000 Mar; 282(1-2):33-6. PubMed ID: 10713389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial/temporal characteristics of a motor pattern for reaching.
    Flanders M; Pellegrini JJ; Soechting JF
    J Neurophysiol; 1994 Feb; 71(2):811-3. PubMed ID: 8176443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motor dysfunction in patients with liver cirrhosis: impairment of handwriting.
    Mechtcheriakov S; Graziadei IW; Kugener A; Schuster I; Mueller J; Hinterhuber H; Vogel W; Marksteiner J
    J Neurol; 2006 Mar; 253(3):349-56. PubMed ID: 16244813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinematic analysis of handwriting movements in patients with obsessive-compulsive disorder.
    Mavrogiorgou P; Mergl R; Tigges P; El Husseini J; Schröter A; Juckel G; Zaudig M; Hegerl U
    J Neurol Neurosurg Psychiatry; 2001 May; 70(5):605-12. PubMed ID: 11309453
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An electromyographic analysis of two handwriting grasp patterns.
    de Almeida PH; da Cruz DM; Magna LA; Ferrigno IS
    J Electromyogr Kinesiol; 2013 Aug; 23(4):838-43. PubMed ID: 23642842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement.
    Milak MS; Shimansky Y; Bracha V; Bloedel JR
    J Neurophysiol; 1997 Aug; 78(2):939-59. PubMed ID: 9307126
    [TBL] [Abstract][Full Text] [Related]  

  • 49. When practice does not make perfect: well-practiced handwriting interferes with the consolidation phase gains in learning a movement sequence.
    Balas M; Roitenberg N; Giladi N; Karni A
    Exp Brain Res; 2007 Apr; 178(4):499-508. PubMed ID: 17091292
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Invariant temporal characteristics of manipulative hand movements.
    Kunesch E; Binkofski F; Freund HJ
    Exp Brain Res; 1989; 78(3):539-46. PubMed ID: 2612597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co-variation between graphic pattern stability and attentional cost: a clue for the difficulty to produce handwritten traces.
    Kostrubiec V; Danna J; Zanone PG
    Hum Mov Sci; 2013 Oct; 32(5):1010-25. PubMed ID: 23597766
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Motor execution affects action prediction.
    Springer A; Brandstädter S; Liepelt R; Birngruber T; Giese M; Mechsner F; Prinz W
    Brain Cogn; 2011 Jun; 76(1):26-36. PubMed ID: 21477908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mentally represented motor actions in normal aging: III. Electromyographic features of imagined arm movements.
    Personnier P; Ballay Y; Papaxanthis C
    Behav Brain Res; 2010 Jan; 206(2):184-91. PubMed ID: 19751770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of the temporal parameters of sensorimotor reactions as a function of movement type in man.
    Smirnov AG; Polyakova MV
    Neurosci Behav Physiol; 1990; 20(5):406-14. PubMed ID: 2077443
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motor constancy and the upsizing of handwriting.
    Phillips JG; Ogeil RP; Best C
    Hum Mov Sci; 2009 Oct; 28(5):578-87. PubMed ID: 19665812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circadian rhythm in handwriting.
    Jasper I; Häussler A; Marquardt C; Hermsdörfer J
    J Sleep Res; 2009 Jun; 18(2):264-71. PubMed ID: 19645970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circadian rhythms in handwriting kinematics and legibility.
    Jasper I; Gordijn M; Häussler A; Hermsdörfer J
    Hum Mov Sci; 2011 Aug; 30(4):818-29. PubMed ID: 20579758
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase-dependent and task-dependent modulation of stretch reflexes during rhythmical hand tasks in humans.
    Xia R; Bush BM; Karst GM
    J Physiol; 2005 May; 564(Pt 3):941-51. PubMed ID: 15746170
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development, maturation and learning influence on handwriting kinematics.
    Accardo AP; Genna M; Borean M
    Hum Mov Sci; 2013 Feb; 32(1):136-46. PubMed ID: 23369774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of imagined movement speed on subsequent motor performance.
    Louis M; Guillot A; Maton S; Doyon J; Collet C
    J Mot Behav; 2008 Mar; 40(2):117-32. PubMed ID: 18400678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.