These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36238368)

  • 1. Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview.
    Vijayvargiya A; Singh B; Kumar R; Tavares JMRS
    Biomed Eng Lett; 2022 Nov; 12(4):343-358. PubMed ID: 36238368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal.
    Vijayvargiya A; Khimraj ; Kumar R; Dey N
    Phys Eng Sci Med; 2021 Dec; 44(4):1297-1309. PubMed ID: 34748192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning.
    Zhou B; Wang H; Hu F; Feng N; Xi H; Zhang Z; Tang H
    Comput Methods Programs Biomed; 2020 Sep; 193():105486. PubMed ID: 32402846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.
    Ergeneci M; Gokcesu K; Ertan E; Kosmas P
    IEEE Trans Biomed Circuits Syst; 2018 Feb; 12(1):68-79. PubMed ID: 29377797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future.
    Li W; Shi P; Yu H
    Front Neurosci; 2021; 15():621885. PubMed ID: 33981195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
    Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G
    J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper Limb Movement Classification Via Electromyographic Signals and an Enhanced Probabilistic Network.
    Burns A; Adeli H; Buford JA
    J Med Syst; 2020 Aug; 44(10):176. PubMed ID: 32829419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.
    Xi X; Tang M; Miran SM; Luo Z
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28555016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
    Nouredanesh M; Tung J
    Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Stream Convolutional Neural Network-Based Wearable, Flexible Bionic Gesture Surface Muscle Feature Extraction and Recognition.
    Liu W; Lu B
    Front Bioeng Biotechnol; 2022; 10():833793. PubMed ID: 35310001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning.
    Lu Y; Wang H; Hu F; Zhou B; Xi H
    Med Biol Eng Comput; 2021 Apr; 59(4):883-899. PubMed ID: 33745104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition.
    Zhang W; Zhao T; Zhang J; Wang Y
    Front Neurorobot; 2023; 17():1127338. PubMed ID: 36925629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study.
    Lobo-Prat J; Janssen MMHP; Koopman BFJM; Stienen AHA; de Groot IJM
    J Neuroeng Rehabil; 2017 Aug; 14(1):86. PubMed ID: 28851391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of sEMG sensors and algorithms for silent speech recognition.
    Meltzner GS; Heaton JT; Deng Y; De Luca G; Roy SH; Kline JC
    J Neural Eng; 2018 Aug; 15(4):046031. PubMed ID: 29855428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Feature fusion of electrocardiogram and surface electromyography for estimating the fatigue states during lower limb rehabilitation].
    Yuan Y; Cao D; Li C; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Dec; 37(6):1056-1064. PubMed ID: 33369345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroencephalogram and surface electromyogram fusion-based precise detection of lower limb voluntary movement using convolution neural network-long short-term memory model.
    Zhang X; Li H; Dong R; Lu Z; Li C
    Front Neurosci; 2022; 16():954387. PubMed ID: 36213740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Fidelity sEMG Signals Recorded by an on-Skin Electrode Based on AgNWs for Hand Gesture Classification Using Machine Learning.
    Zou X; Xue J; Li X; Chan CPY; Li Z; Li P; Yang Z; Lai KWC
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19374-19383. PubMed ID: 37036803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cost Wearable Band Sensors of Surface Electromyography for Detecting Hand Movements.
    Gomez-Correa M; Cruz-Ortiz D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.