These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36238371)

  • 1. Proliferative effects of nanobubbles on fibroblasts.
    Heo H; Park J; Lee JI; Kim J; Park JY; Kim JM
    Biomed Eng Lett; 2022 Nov; 12(4):393-400. PubMed ID: 36238371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective.
    Babu KS; Amamcharla JK
    Crit Rev Food Sci Nutr; 2023; 63(28):9262-9281. PubMed ID: 35467989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation Of Nanobubbles Modified With A Small-Molecule CXCR4 Antagonist For Targeted Drug Delivery To Tumors And Enhanced Ultrasound Molecular Imaging.
    Peng Y; Zhu L; Wang L; Liu Y; Fang K; Lan M; Shen D; Liu D; Yu Z; Guo Y
    Int J Nanomedicine; 2019; 14():9139-9157. PubMed ID: 32063704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential role of nanobubbles in dynamically modulating the structure and stability of anammox granular sludge within biological nitrogen removal process.
    Fu HM; Peng MW; Yan P; Wei Z; Fang F; Guo JS; Chen YP
    Sci Total Environ; 2021 Aug; 784():147110. PubMed ID: 33901950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germ cell differentiation of mouse embryonic stem cells can be influenced by the culture medium.
    Bahmanpour S; Talaei Khozani T; Soleimani A; Zareifard N
    Biotech Histochem; 2020 Apr; 95(3):210-218. PubMed ID: 31617423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Mixing and Nanosolids on the Formation of Nanobubbles.
    Xiao W; Wang X; Zhou L; Zhou W; Wang J; Qin W; Qiu G; Hu J; Zhang L
    J Phys Chem B; 2019 Jan; 123(1):317-323. PubMed ID: 30532958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution.
    Xu J; Salari A; Wang Y; He X; Kerr L; Darbandi A; de Leon AC; Exner AA; Kolios MC; Yuen D; Tsai SSH
    Small; 2021 May; 17(20):e2100345. PubMed ID: 33811441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dissolved-gas concentration on bulk nanobubbles generation using ultrasonication.
    Lee JI; Yim BS; Kim JM
    Sci Rep; 2020 Nov; 10(1):18816. PubMed ID: 33139819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference.
    Jia M; Farid MU; Kharraz JA; Kumar NM; Chopra SS; Jang A; Chew J; Khanal SK; Chen G; An AK
    Water Res; 2023 Oct; 245():120613. PubMed ID: 37738940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the cycling of clonogenic and primitive cord blood progenitors by various growth factors.
    Movassagh M; Caillot L; Baillou C; Guigon M; Lemoine FM
    Stem Cells; 1997; 15(3):214-22. PubMed ID: 9170213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apatinib-loaded lipid nanobubbles combined with ultrasound-targeted nanobubble destruction for synergistic treatment of HepG2 cells in vitro.
    Tian Y; Liu Z; Zhang L; Zhang J; Han X; Wang Q; Cheng W
    Onco Targets Ther; 2018; 11():4785-4795. PubMed ID: 30127626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles.
    Jin J; Feng Z; Yang F; Gu N
    Langmuir; 2019 Mar; 35(12):4238-4245. PubMed ID: 30817886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanobubble Technologies Offer Opportunities To Improve Water Treatment.
    Atkinson AJ; Apul OG; Schneider O; Garcia-Segura S; Westerhoff P
    Acc Chem Res; 2019 May; 52(5):1196-1205. PubMed ID: 30958672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of Oxygen Nanobubbles under Freshwater Conditions.
    Soyluoglu M; Kim D; Zaker Y; Karanfil T
    Water Res; 2021 Nov; 206():117749. PubMed ID: 34678695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis.
    Gao Z; Wu W; Sun W; Wang B
    Langmuir; 2021 Sep; 37(38):11281-11291. PubMed ID: 34520212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating Bulk Nanobubbles in Alcohol Systems.
    Ji Y; Guo Z; Tan T; Wang Y; Zhang L; Hu J; Zhang Y
    ACS Omega; 2021 Feb; 6(4):2873-2881. PubMed ID: 33553905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indocyanine green assembled free oxygen-nanobubbles towards enhanced near-infrared induced photodynamic therapy.
    Yang L; Huang B; Hu S; An Y; Sheng J; Li Y; Wang Y; Gu N
    Nano Res; 2022; 15(5):4285-4293. PubMed ID: 35126878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asparagine endopeptidase-targeted Ultrasound-responsive Nanobubbles Alleviate Tau Cleavage and Amyloid-β Deposition in an Alzheimer's Disease Model.
    Mi X; Du H; Guo X; Wu Y; Shen L; Luo Y; Wang D; Su Q; Xiang R; Yue S; Wu S; Gong J; Yang Z; Zhang Y; Tan X
    Acta Biomater; 2022 Mar; 141():388-397. PubMed ID: 35045359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film with Ordered Nanopores.
    Ma T; Kimura Y; Yamamoto H; Feng X; Hirano-Iwata A; Niwano M
    J Phys Chem B; 2020 Jun; 124(24):5067-5072. PubMed ID: 32437155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.