These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36238487)

  • 1. Qualitative Analysis of the Transmission Dynamics of Dengue with the Effect of Memory, Reinfection, and Vaccination.
    Tang TQ; Jan R; Bonyah E; Shah Z; Alzahrani E
    Comput Math Methods Med; 2022; 2022():7893570. PubMed ID: 36238487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives.
    Omame A; Abbas M; Abdel-Aty AH
    Chaos Solitons Fractals; 2022 Sep; 162():112427. PubMed ID: 35844899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the dynamics of a vector-borne infection with the effect of imperfect vaccination from a fractional perspective.
    Tang TQ; Jan R; Khurshaid A; Shah Z; Vrinceanu N; Racheriu M
    Sci Rep; 2023 Sep; 13(1):14398. PubMed ID: 37658134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a fractional-order model for dengue transmission dynamics with quarantine and vaccination measures.
    Usman M; Abbas M; Khan SH; Omame A
    Sci Rep; 2024 May; 14(1):11954. PubMed ID: 38796642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new model of dengue fever in terms of fractional derivative.
    Fatmawati F; Jan R; Khan MA; Khan Y; Ullah S
    Math Biosci Eng; 2020 Aug; 17(5):5267-5287. PubMed ID: 33120552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional-calculus analysis of the transmission dynamics of the dengue infection.
    Srivastava HM; Jan R; Jan A; Deebani W; Shutaywi M
    Chaos; 2021 May; 31(5):053130. PubMed ID: 34240948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of dengue epidemic: control methods and vaccination strategies.
    Carvalho SA; da Silva SO; Charret IDC
    Theory Biosci; 2019 Nov; 138(2):223-239. PubMed ID: 30740641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of a time-fractional COVID-19 mathematical model with singular kernel.
    Adnan ; Ali A; Ur Rahmamn M; Shah Z; Kumam P
    Adv Contin Discret Model; 2022; 2022(1):34. PubMed ID: 35462615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Potential Impact of Vaccination on the Dynamics of Dengue Infections.
    Knipl D; Moghadas SM
    Bull Math Biol; 2015 Dec; 77(12):2212-30. PubMed ID: 26585748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.
    Knerer G; Currie CS; Brailsford SC
    Health Care Manag Sci; 2015 Jun; 18(2):205-17. PubMed ID: 24370922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the impact of serostatus-dependent immunization on mitigating the spread of dengue virus.
    Xue L; Jin X; Zhu H
    J Math Biol; 2023 Jun; 87(1):5. PubMed ID: 37301798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projected Impact of Dengue Vaccination in Yucatán, Mexico.
    Hladish TJ; Pearson CA; Chao DL; Rojas DP; Recchia GL; Gómez-Dantés H; Halloran ME; Pulliam JR; Longini IM
    PLoS Negl Trop Dis; 2016 May; 10(5):e0004661. PubMed ID: 27227883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical evidence of the effect of school gathering on the dynamics of dengue epidemics.
    Hernández-Suárez CM; Mendoza-Cano O
    Glob Health Action; 2016; 9():28026. PubMed ID: 26743450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidemic prediction of dengue fever based on vector compartment model and Markov chain Monte Carlo method.
    Lee CH; Chang K; Chen YM; Tsai JT; Chen YJ; Ho WH
    BMC Bioinformatics; 2021 Nov; 22(Suppl 5):118. PubMed ID: 34749630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIR Model for Dengue Disease with Effect of Dengue Vaccination.
    Chanprasopchai P; Tang IM; Pongsumpun P
    Comput Math Methods Med; 2018; 2018():9861572. PubMed ID: 30228830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD8+ T Cells Can Mediate Short-Term Protection against Heterotypic Dengue Virus Reinfection in Mice.
    Zellweger RM; Tang WW; Eddy WE; King K; Sanchez MC; Shresta S
    J Virol; 2015 Jun; 89(12):6494-505. PubMed ID: 25855749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Classical dengue transmission dynamics involving mechanical control and prophylaxis].
    Toro-Zapata HD; Restrepo LD; Vergaño-Salazar JG; Muñoz-Loaiza A
    Rev Salud Publica (Bogota); 2010 Dec; 12(6):1020-32. PubMed ID: 22030689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamical study of a fuzzy epidemic model of Mosquito-Borne Disease.
    Dayan F; Rafiq M; Ahmed N; Raza A; Ahmad MO
    Comput Biol Med; 2022 Sep; 148():105673. PubMed ID: 35803748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia.
    Teurlai M; Menkès CE; Cavarero V; Degallier N; Descloux E; Grangeon JP; Guillaumot L; Libourel T; Lucio PS; Mathieu-Daudé F; Mangeas M
    PLoS Negl Trop Dis; 2015 Dec; 9(12):e0004211. PubMed ID: 26624008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Caputo fractional-order model for COVID-19 with lockdown.
    Ahmed I; Baba IA; Yusuf A; Kumam P; Kumam W
    Adv Differ Equ; 2020; 2020(1):394. PubMed ID: 32834819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.