These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36239149)

  • 1. ploidyfrost: Reference-free estimation of ploidy level from whole genome sequencing data based on de Bruijn graphs.
    Sun M; Pang E; Bai WN; Zhang DY; Lin K
    Mol Ecol Resour; 2023 Feb; 23(2):499-510. PubMed ID: 36239149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating long-range connectivity information into de Bruijn graphs.
    Turner I; Garimella KV; Iqbal Z; McVean G
    Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BrownieAligner: accurate alignment of Illumina sequencing data to de Bruijn graphs.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2018 Sep; 19(1):311. PubMed ID: 30180801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. nQuire: a statistical framework for ploidy estimation using next generation sequencing.
    Weiß CL; Pais M; Cano LM; Kamoun S; Burbano HA
    BMC Bioinformatics; 2018 Apr; 19(1):122. PubMed ID: 29618319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AbsCN-seq: a statistical method to estimate tumor purity, ploidy and absolute copy numbers from next-generation sequencing data.
    Bao L; Pu M; Messer K
    Bioinformatics; 2014 Apr; 30(8):1056-1063. PubMed ID: 24389661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph.
    Benoit G; Lemaitre C; Lavenier D; Drezen E; Dayris T; Uricaru R; Rizk G
    BMC Bioinformatics; 2015 Sep; 16():288. PubMed ID: 26370285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of simple and complex de novo mutations with multiple reference sequences.
    Garimella KV; Iqbal Z; Krause MA; Campino S; Kekre M; Drury E; Kwiatkowski D; Sá JM; Wellems TE; McVean G
    Genome Res; 2020 Aug; 30(8):1154-1169. PubMed ID: 32817236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the representation of de Bruijn graphs.
    Chikhi R; Limasset A; Jackman S; Simpson JT; Medvedev P
    J Comput Biol; 2015 May; 22(5):336-52. PubMed ID: 25629448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical dynamic de Bruijn graphs.
    Crawford VG; Kuhnle A; Boucher C; Chikhi R; Gagie T
    Bioinformatics; 2018 Dec; 34(24):4189-4195. PubMed ID: 29939217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurity: accurate tumor purity and ploidy inference from tumor-normal WGS data by jointly modelling somatic copy number alterations and heterozygous germline single-nucleotide-variants.
    Luo Z; Fan X; Su Y; Huang YS
    Bioinformatics; 2018 Jun; 34(12):2004-2011. PubMed ID: 29385401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of viral quasispecies with a paired de Bruijn graph.
    Freire B; Ladra S; Paramá JR; Salmela L
    Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate determination of node and arc multiplicities in de bruijn graphs using conditional random fields.
    Steyaert A; Audenaert P; Fostier J
    BMC Bioinformatics; 2020 Sep; 21(1):402. PubMed ID: 32928110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ConPADE: genome assembly ploidy estimation from next-generation sequencing data.
    Margarido GR; Heckerman D
    PLoS Comput Biol; 2015 Apr; 11(4):e1004229. PubMed ID: 25880203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.