These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 36239163)
1. Surfactant Assisted In Situ Synthesis of Nanofibrillated Cellulose/Polymethylsilsesquioxane Aerogel for Tuning Its Thermal Performance. Gupta P; Sathwane M; Chhajed M; Verma C; Grohens Y; Seantier B; Agrawal AK; Maji PK Macromol Rapid Commun; 2023 Jan; 44(2):e2200628. PubMed ID: 36239163 [TBL] [Abstract][Full Text] [Related]
2. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770 [TBL] [Abstract][Full Text] [Related]
3. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications. Maleki H; Whitmore L; Hüsing N J Mater Chem A Mater; 2018 Jul; 6(26):12598-12612. PubMed ID: 30713688 [TBL] [Abstract][Full Text] [Related]
4. Bio-Templated Aerogel Fibers: Heterogeneous Spinodal Architecting and In Situ Fibrillation of Thermoplastic Polyurethane-Silica on Nanostructured Cellulose Nanofiber Scaffold for Enhanced Thermomechanical Performance. Omranpour H; Monfared AR; Buahom P; Shahreza BO; Salehi A; Rahmati R; Park CB ACS Appl Mater Interfaces; 2024 Oct; 16(43):57981-57994. PubMed ID: 39410758 [TBL] [Abstract][Full Text] [Related]
5. "Robust-Soft" Anisotropic Nanofibrillated Cellulose Aerogels with Superior Mechanical, Flame-Retardant, and Thermal Insulating Properties. Yan M; Pan Y; Cheng X; Zhang Z; Deng Y; Lun Z; Gong L; Gao M; Zhang H ACS Appl Mater Interfaces; 2021 Jun; 13(23):27458-27470. PubMed ID: 34081863 [TBL] [Abstract][Full Text] [Related]
7. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel. Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C Gels; 2021 Oct; 7(4):. PubMed ID: 34698206 [TBL] [Abstract][Full Text] [Related]
8. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. Hayase G; Kanamori K; Abe K; Yano H; Maeno A; Kaji H; Nakanishi K ACS Appl Mater Interfaces; 2014 Jun; 6(12):9466-71. PubMed ID: 24865571 [TBL] [Abstract][Full Text] [Related]
9. Highly compressible and hydrophobic nanofibrillated cellulose aerogels for cyclic oil/water separation. Fan B; Wu L; Ming A; Liu Y; Yu Y; Cui L; Zhou M; Wang Q; Wang P Int J Biol Macromol; 2023 Jul; 242(Pt 3):125066. PubMed ID: 37268071 [TBL] [Abstract][Full Text] [Related]
10. Solvent-resistant CTAB-modified polymethylsilsesquioxane aerogels for organic solvent and oil adsorption. Lin YF; Hsu SH J Colloid Interface Sci; 2017 Jan; 485():152-158. PubMed ID: 27662027 [TBL] [Abstract][Full Text] [Related]
11. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Fu J; Wang S; He C; Lu Z; Huang J; Chen Z Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912 [TBL] [Abstract][Full Text] [Related]
12. A Co-Precursor Approach Coupled with a Supercritical Modification Method for Constructing Highly Transparent and Superhydrophobic Polymethylsilsesquioxane Aerogels. Lei C; Li J; Sun C; Yang H; Xia T; Hu Z; Zhang Y Molecules; 2018 Mar; 23(4):. PubMed ID: 29601481 [TBL] [Abstract][Full Text] [Related]
14. Rational synthesis of methylsilsesquioxane aerogels addressing thermal load and compression recovery issues in Li-ion batteries. Li C; Zhang G; Wang Y; Lin L; Ken Ostrikov K J Colloid Interface Sci; 2024 Sep; 669():157-174. PubMed ID: 38713955 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Shaheed N; Javanshir S; Esmkhani M; Dekamin MG; Naimi-Jamal MR Sci Rep; 2021 Sep; 11(1):18553. PubMed ID: 34535724 [TBL] [Abstract][Full Text] [Related]
16. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Chhajed M; Yadav C; Agrawal AK; Maji PK Carbohydr Polym; 2019 Dec; 226():115286. PubMed ID: 31582050 [TBL] [Abstract][Full Text] [Related]
17. Boron nitride-nanosheet enhanced cellulose nanofiber aerogel with excellent thermal management properties. Liu Y; Zhang Y; Liao T; Gao L; Wang M; Xu X; Yang X; Liu H Carbohydr Polym; 2020 Aug; 241():116425. PubMed ID: 32507211 [TBL] [Abstract][Full Text] [Related]
18. [Utilization of UiO-66-NH Chen Z; Wu Y; Tan X; Meng J; Cen J; Liu M Se Pu; 2022 Jun; 40(6):556-564. PubMed ID: 35616201 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Zhang M; Jiang S; Han F; Li M; Wang N; Liu L Carbohydr Polym; 2021 Jul; 264():118033. PubMed ID: 33910743 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of super hydrophobic aerogels derived from tunicate cellulose nanocrystals. Wu S; Ning D; Xu D; Cheng Y; Mondal AK; Zou Q; Zhu H; Huang F Carbohydr Res; 2022 Jan; 511():108488. PubMed ID: 34875481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]