These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 36239185)
1. Dynamically Crosslinked Poly(ethylene-glycol) Hydrogels Reveal a Critical Role of Viscoelasticity in Modulating Glioblastoma Fates and Drug Responses in 3D. Sinha S; Ayushman M; Tong X; Yang F Adv Healthc Mater; 2023 Jan; 12(1):e2202147. PubMed ID: 36239185 [TBL] [Abstract][Full Text] [Related]
2. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
3. Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels. Wang C; Sinha S; Jiang X; Murphy L; Fitch S; Wilson C; Grant G; Yang F Tissue Eng Part A; 2021 Mar; 27(5-6):390-401. PubMed ID: 32731804 [TBL] [Abstract][Full Text] [Related]
4. Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels. Wang C; Tong X; Jiang X; Yang F J Biomed Mater Res A; 2017 Mar; 105(3):770-778. PubMed ID: 27770562 [TBL] [Abstract][Full Text] [Related]
5. Gradient hydrogels for screening stiffness effects on patient-derived glioblastoma xenograft cellfates in 3D. Zhu D; Trinh P; Li J; Grant GA; Yang F J Biomed Mater Res A; 2021 Jun; 109(6):1027-1035. PubMed ID: 32862485 [TBL] [Abstract][Full Text] [Related]
6. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
7. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Nguyen HD; Lin CC Acta Biomater; 2024 Mar; 177():203-215. PubMed ID: 38354874 [TBL] [Abstract][Full Text] [Related]
8. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Lou J; Stowers R; Nam S; Xia Y; Chaudhuri O Biomaterials; 2018 Feb; 154():213-222. PubMed ID: 29132046 [TBL] [Abstract][Full Text] [Related]
9. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids. Hill L; Bruns J; Zustiak SP Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. Zhang Y; Wang Z; Sun Q; Li Q; Li S; Li X Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512435 [TBL] [Abstract][Full Text] [Related]
11. Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels. Wang C; Li J; Sinha S; Peterson A; Grant GA; Yang F Biomaterials; 2019 May; 202():35-44. PubMed ID: 30836243 [TBL] [Abstract][Full Text] [Related]
12. Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion. Heffernan JM; Overstreet DJ; Le LD; Vernon BL; Sirianni RW Ann Biomed Eng; 2015 Aug; 43(8):1965-77. PubMed ID: 25515315 [TBL] [Abstract][Full Text] [Related]
13. Spatial and Temporal Control of 3D Hydrogel Viscoelasticity through Phototuning. Crandell P; Stowers R ACS Biomater Sci Eng; 2023 Dec; 9(12):6860-6869. PubMed ID: 38019272 [TBL] [Abstract][Full Text] [Related]
14. Enhanced targeting of invasive glioblastoma cells by peptide-functionalized gold nanorods in hydrogel-based 3D cultures. Gonçalves DPN; Rodriguez RD; Kurth T; Bray LJ; Binner M; Jungnickel C; Gür FN; Poser SW; Schmidt TL; Zahn DRT; Androutsellis-Theotokis A; Schlierf M; Werner C Acta Biomater; 2017 Aug; 58():12-25. PubMed ID: 28576716 [TBL] [Abstract][Full Text] [Related]
15. Tuning Viscoelasticity in Alginate Hydrogels for 3D Cell Culture Studies. Charbonier F; Indana D; Chaudhuri O Curr Protoc; 2021 May; 1(5):e124. PubMed ID: 34000104 [TBL] [Abstract][Full Text] [Related]
16. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Nam S; Stowers R; Lou J; Xia Y; Chaudhuri O Biomaterials; 2019 Apr; 200():15-24. PubMed ID: 30743050 [TBL] [Abstract][Full Text] [Related]
17. Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell Morphogenesis in 3D Culture. Indana D; Agarwal P; Bhutani N; Chaudhuri O Adv Mater; 2021 Oct; 33(43):e2101966. PubMed ID: 34499389 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of brain tumor cells from different age and anatomical locations using 3D biomimetic hydrogels. Wang C; Sinha S; Jiang X; Fitch S; Wilson C; Caretti V; Ponnuswami A; Monje M; Grant G; Yang F Acta Biomater; 2020 Oct; 116():201-208. PubMed ID: 32911104 [TBL] [Abstract][Full Text] [Related]
19. Crosslinker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels. Lin YH; Lou J; Xia Y; Chaudhuri O bioRxiv; 2024 Jun; ():. PubMed ID: 38766044 [TBL] [Abstract][Full Text] [Related]
20. Viscoelastic hydrogels for 3D cell culture. Chaudhuri O Biomater Sci; 2017 Jul; 5(8):1480-1490. PubMed ID: 28584885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]