These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 36239185)
21. Hyaluronic-Acid Based Hydrogels for 3-Dimensional Culture of Patient-Derived Glioblastoma Cells. Xiao W; Ehsanipour A; Sohrabi A; Seidlits SK J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199037 [TBL] [Abstract][Full Text] [Related]
22. Interpenetrating network hydrogels for studying the role of matrix viscoelasticity in 3D osteocyte morphogenesis. Bernero M; Zauchner D; Müller R; Qin XH Biomater Sci; 2024 Feb; 12(4):919-932. PubMed ID: 38231154 [TBL] [Abstract][Full Text] [Related]
23. A human co-culture cell model incorporating microglia supports glioblastoma growth and migration, and confers resistance to cytotoxics. Leite DM; Zvar Baskovic B; Civita P; Neto C; Gumbleton M; Pilkington GJ FASEB J; 2020 Jan; 34(1):1710-1727. PubMed ID: 31914660 [TBL] [Abstract][Full Text] [Related]
24. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
25. The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels. Lee S; Tong X; Yang F Acta Biomater; 2014 Oct; 10(10):4167-74. PubMed ID: 24887284 [TBL] [Abstract][Full Text] [Related]
26. Injectable PEG Hydrogels with Tissue-Like Viscoelasticity Formed through Reversible Alendronate-Calcium Phosphate Crosslinking for Cell-Material Interactions. Yu H; Yan Z; Dreiss CA; Gaitano GG; Jarvis JA; Gentleman E; da Silva RMP; Grigoriadis AE Adv Healthc Mater; 2024 Sep; 13(22):e2400472. PubMed ID: 38809180 [TBL] [Abstract][Full Text] [Related]
34. Characterization and structure-property relationships of an injectable thiol-Michael addition hydrogel toward compatibility with glioblastoma therapy. Khan ZM; Wilts E; Vlaisavljevich E; Long TE; Verbridge SS Acta Biomater; 2022 May; 144():266-278. PubMed ID: 35296443 [TBL] [Abstract][Full Text] [Related]
35. Molecular Tuning of a Benzene-1,3,5-Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM-Mimetic Hydrogels and Bioinks. Hafeez S; Aldana AA; Duimel H; Ruiter FAA; Decarli MC; Lapointe V; van Blitterswijk C; Moroni L; Baker MB Adv Mater; 2023 Jun; 35(24):e2207053. PubMed ID: 36858040 [TBL] [Abstract][Full Text] [Related]
36. Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. Rao SS; Dejesus J; Short AR; Otero JJ; Sarkar A; Winter JO ACS Appl Mater Interfaces; 2013 Oct; 5(19):9276-84. PubMed ID: 24010546 [TBL] [Abstract][Full Text] [Related]
37. Colloidal hydrogels made of gelatin nanoparticles exhibit fast stress relaxation at strains relevant for cell activity. Bertsch P; Andrée L; Besheli NH; Leeuwenburgh SCG Acta Biomater; 2022 Jan; 138():124-132. PubMed ID: 34740854 [TBL] [Abstract][Full Text] [Related]
38. Self-renewal or quiescence? Orchestrating the fate of mesenchymal stem cells by matrix viscoelasticity via PI3K/Akt-CDK1 pathway. Lin C; He Y; Feng Q; Xu K; Chen Z; Tao B; Li X; Xia Z; Jiang H; Cai K Biomaterials; 2021 Dec; 279():121235. PubMed ID: 34749070 [TBL] [Abstract][Full Text] [Related]
39. Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Nguyen HD; Sun X; Yokota H; Lin CC Biomacromolecules; 2021 Mar; 22(3):1115-1126. PubMed ID: 33543929 [TBL] [Abstract][Full Text] [Related]
40. Predictably Engineering the Viscoelastic Behavior of Dynamic Hydrogels via Correlation with Molecular Parameters. Lou J; Friedowitz S; Will K; Qin J; Xia Y Adv Mater; 2021 Dec; 33(51):e2104460. PubMed ID: 34636090 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]