These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36239698)

  • 1. Fueling DNA Self-Assembly via Gel-Released Regulators.
    Le J; Osmanovic D; Klocke MA; Franco E
    ACS Nano; 2022 Oct; 16(10):16372-16384. PubMed ID: 36239698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-Driven Assembly and Disassembly of Hybrid DNA-RNA Nanotubes.
    Agarwal S; Franco E
    J Am Chem Soc; 2019 May; 141(19):7831-7841. PubMed ID: 31042366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic self-assembly of compartmentalized DNA nanotubes.
    Agarwal S; Klocke MA; Pungchai PE; Franco E
    Nat Commun; 2021 Jun; 12(1):3557. PubMed ID: 34117248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multidomain hybrid hydrogels: spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators.
    Cornwell DJ; Okesola BO; Smith DK
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12461-5. PubMed ID: 25146876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liposomal drugs dispersed in hydrogels. Effect of liposome, drug and gel properties on drug release kinetics.
    Mourtas S; Fotopoulou S; Duraj S; Sfika V; Tsakiroglou C; Antimisiaris SG
    Colloids Surf B Biointerfaces; 2007 Apr; 55(2):212-21. PubMed ID: 17223020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-monotonous enzyme-assisted self-assembly profiles resulting from reaction-diffusion processes in host gels.
    Runser JY; Criado-Gonzalez M; Fneich F; Rabineau M; Senger B; Weiss P; Jierry L; Schaaf P
    J Colloid Interface Sci; 2022 Aug; 620():234-241. PubMed ID: 35428005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous dynamic control of DNA nanostructure self-assembly.
    Green LN; Subramanian HKK; Mardanlou V; Kim J; Hariadi RF; Franco E
    Nat Chem; 2019 Jun; 11(6):510-520. PubMed ID: 31011170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of RNA Nanostructures from Double-Crossover Tiles.
    Stewart JM; Subramanian HKK; Franco E
    Methods Mol Biol; 2022; 2433():293-302. PubMed ID: 34985752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the sustained release ability of bevacizumab-loaded tetra-PEG gel.
    Murakami T; Hoshi S; Okamoto F; Sakai T; Katashima T; Naito M; Oshika T
    Exp Eye Res; 2022 Oct; 223():109206. PubMed ID: 35921961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-induced disassembly of self-assembled vesicle-capped nanotubes observed in real time.
    Coleman AC; Beierle JM; Stuart MC; Maciá B; Caroli G; Mika JT; van Dijken DJ; Chen J; Browne WR; Feringa BL
    Nat Nanotechnol; 2011 Aug; 6(9):547-52. PubMed ID: 21841795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and melting of DNA nanotubes from single-sequence tiles.
    Sobey TL; Renner S; Simmel FC
    J Phys Condens Matter; 2009 Jan; 21(3):034112. PubMed ID: 21817257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels.
    Wang J; Chao J; Liu H; Su S; Wang L; Huang W; Willner I; Fan C
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):2171-2175. PubMed ID: 28079290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printable Hydrogels Based on Alginate and Halloysite Nanotubes.
    Cavallaro G; Lisuzzo L; Lazzara G; Milioto S
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ assembly of Ca-alginate gels with controlled pore loading/release capability.
    Sergeeva AS; Gorin DA; Volodkin DV
    Langmuir; 2015 Oct; 31(39):10813-21. PubMed ID: 26345198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: systems for sustained release of camptothecin.
    Rizzo C; Arrigo R; D'Anna F; Di Blasi F; Dintcheva NT; Lazzara G; Parisi F; Riela S; Spinelli G; Massaro M
    J Mater Chem B; 2017 May; 5(17):3217-3229. PubMed ID: 32263720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoswitchable gel assembly based on molecular recognition.
    Yamaguchi H; Kobayashi Y; Kobayashi R; Takashima Y; Hashidzume A; Harada A
    Nat Commun; 2012 Jan; 3():603. PubMed ID: 22215078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protected Amino Acid-Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release.
    Guilbaud-Chéreau C; Dinesh B; Schurhammer R; Collin D; Bianco A; Ménard-Moyon C
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13147-13157. PubMed ID: 30865420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotube-grafted polyacrylamide hydrogels for electrophoretic protein separation.
    Gunavadhi M; Maria LA; Chamundeswari VN; Parthasarathy M
    Electrophoresis; 2012 Apr; 33(8):1271-5. PubMed ID: 22589105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating DNA strand-displacement circuitry with DNA tile self-assembly.
    Zhang DY; Hariadi RF; Choi HM; Winfree E
    Nat Commun; 2013; 4():1965. PubMed ID: 23756381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-Regulated Self-Assembly of an Achiral Donor-Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification.
    Li Y; Duan P; Liu M
    Chemistry; 2017 Jun; 23(34):8225-8231. PubMed ID: 28337793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.