BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 36239765)

  • 1. Soybean genetic resources contributing to sustainable protein production.
    Guo B; Sun L; Jiang S; Ren H; Sun R; Wei Z; Hong H; Luan X; Wang J; Wang X; Xu D; Li W; Guo C; Qiu LJ
    Theor Appl Genet; 2022 Nov; 135(11):4095-4121. PubMed ID: 36239765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.
    Eskandari M; Cober ER; Rajcan I
    Theor Appl Genet; 2013 Jun; 126(6):1677-87. PubMed ID: 23536049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association analysis for yield-related traits at the R6 stage in a Chinese soybean mini core collection.
    Li X; Zhou Y; Bu Y; Wang X; Zhang Y; Guo N; Zhao J; Xing H
    Genes Genomics; 2021 Aug; 43(8):897-912. PubMed ID: 33956328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the Genetic Architecture of Seed Protein and Oil Content in Soybean from the Yangtze and Huaihe River Valleys Using Multi-Locus Genome-Wide Association Studies.
    Li S; Xu H; Yang J; Zhao T
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31234445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yield, protein, and oil quality of soybean genotypes selected for tofu production.
    Rao MS; Bhagsari AS; Mohamed AI
    Plant Foods Hum Nutr; 1998; 52(3):241-51. PubMed ID: 9950085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic soybeans and soybean protein analysis: an overview.
    Natarajan S; Luthria D; Bae H; Lakshman D; Mitra A
    J Agric Food Chem; 2013 Dec; 61(48):11736-43. PubMed ID: 24099420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines.
    Palomeque L; Li-Jun L; Li W; Hedges B; Cober ER; Rajcan I
    Theor Appl Genet; 2009 Aug; 119(3):429-36. PubMed ID: 19462149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean.
    Zhang W; Xu W; Zhang H; Liu X; Cui X; Li S; Song L; Zhu Y; Chen X; Chen H
    Theor Appl Genet; 2021 May; 134(5):1329-1341. PubMed ID: 33507340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Combined Linkage and GWAS Analysis Identifies QTLs Linked to Soybean Seed Protein and Oil Content.
    Zhang T; Wu T; Wang L; Jiang B; Zhen C; Yuan S; Hou W; Wu C; Han T; Sun S
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing.
    Zhang Y; Li W; Lin Y; Zhang L; Wang C; Xu R
    BMC Genomics; 2018 Aug; 19(1):641. PubMed ID: 30157757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haplotype diversity underlying quantitative traits in Canadian soybean breeding germplasm.
    Bruce RW; Torkamaneh D; Grainger CM; Belzile F; Eskandari M; Rajcan I
    Theor Appl Genet; 2020 Jun; 133(6):1967-1976. PubMed ID: 32193569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating omics approaches to discover and prioritize candidate genes involved in oil biosynthesis in soybean.
    Turquetti-Moraes DK; Moharana KC; Almeida-Silva F; Pedrosa-Silva F; Venancio TM
    Gene; 2022 Jan; 808():145976. PubMed ID: 34592351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.
    Eskandari M; Cober ER; Rajcan I
    Theor Appl Genet; 2013 Jul; 126(7):1839-50. PubMed ID: 23568222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineering of Soybean Oil and Its Impact on Agronomic Traits.
    Song H; Taylor DC; Zhang M
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication.
    Zhang D; Zhang H; Hu Z; Chu S; Yu K; Lv L; Yang Y; Zhang X; Chen X; Kan G; Tang Y; An YC; Yu D
    PLoS Genet; 2019 Jul; 15(7):e1008267. PubMed ID: 31291251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.
    Pham AT; Lee JD; Shannon JG; Bilyeu KD
    BMC Plant Biol; 2010 Sep; 10():195. PubMed ID: 20828382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.
    Wang X; Jiang GL; Green M; Scott RA; Song Q; Hyten DL; Cregan PB
    Mol Genet Genomics; 2014 Oct; 289(5):935-49. PubMed ID: 24861102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A platform for soybean molecular breeding: the utilization of core collections for food security.
    Qiu LJ; Xing LL; Guo Y; Wang J; Jackson SA; Chang RZ
    Plant Mol Biol; 2013 Sep; 83(1-2):41-50. PubMed ID: 23708950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.
    Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT
    J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions.
    Li D; Zhao X; Han Y; Li W; Xie F
    Genomics; 2019 Jan; 111(1):90-95. PubMed ID: 29325965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.