BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36239813)

  • 1. Existence of a novel heavy metal-tolerant Pseudomonas aeruginosa strain Zambia SZK-17 Kabwe 1: the potential bioremediation agent in the heavy metal-contaminated area.
    Mtengai K; Ramasamy S; Msimuko P; Mzula A; Mwega ED
    Environ Monit Assess; 2022 Oct; 194(12):887. PubMed ID: 36239813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy.
    Rizvi A; Ahmed B; Zaidi A; Khan MS
    Environ Monit Assess; 2020 Dec; 192(12):801. PubMed ID: 33263175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of cadmium and nickel biosorption by Pseudomonas sp. via response surface methodology.
    Hosseini Zabet A; Ahmady-Asbchin S
    World J Microbiol Biotechnol; 2023 Mar; 39(5):135. PubMed ID: 36961587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanism of heavy-metal tolerance in Pseudomonas aeruginosa ZGKD2].
    Zhang YX; Wang J; Chai TY; Zhang Q; Liu JG; Li X; Bai ZQ; Su ZJ
    Huan Jing Ke Xue; 2012 Oct; 33(10):3613-9. PubMed ID: 23233996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by
    Zeng G; He Y; Liang D; Wang F; Luo Y; Yang H; Wang Q; Wang J; Gao P; Wen X; Yu C; Sun D
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa.
    R L; Rejiniemon TS; Sathya R; Kuppusamy P; Al-Mekhlafi FA; Wadaan MA; Rajendran P
    Chemosphere; 2022 Nov; 306():135479. PubMed ID: 35753418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous cleanup of Reactive Black 5 and cadmium by a desert soil bacterium.
    Louati I; Elloumi-Mseddi J; Cheikhrouhou W; Hadrich B; Nasri M; Aifa S; Woodward S; Mechichi T
    Ecotoxicol Environ Saf; 2020 Mar; 190():110103. PubMed ID: 31887707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and identification of a new Bacillus glycinifermentans strain from date palm rhizosphere and its effect on barley seeds under heavy metal stress.
    Belhassan M; Farhat A; Abed HE; Chaabeen Z; Bouzid F; Elleuch A; Fendri I; Khemakhem B
    Braz J Microbiol; 2024 Mar; 55(1):843-854. PubMed ID: 38270795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals.
    Izrael-Živković L; Beškoski V; Rikalović M; Kazazić S; Shapiro N; Woyke T; Gojgić-Cvijović G; Vrvić MM; Maksimović N; Karadžić I
    Extremophiles; 2019 Jul; 23(4):399-405. PubMed ID: 30949775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn.
    Kocoń A; Jurga B
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4990-5000. PubMed ID: 27995509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: Implications for bioremediation of heavy metal pollution.
    Deng J; Fu D; Hu W; Lu X; Wu Y; Bryan H
    Bioresour Technol; 2020 May; 303():122963. PubMed ID: 32050124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification-bioremediation of copper, lead, and cadmium-contaminated soil by combined ryegrass (Lolium multiflorum Lam.) and Pseudomonas aeruginosa treatment.
    Shi GY; Yan YJ; Yu ZQ; Zhang L; Cheng YY; Shi WL
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37668-37676. PubMed ID: 32608000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils.
    Saif S; Khan MS
    Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.).
    Kim SU; Cheong YH; Seo DC; Hur JS; Heo JS; Cho JS
    Water Sci Technol; 2007; 55(1-2):105-11. PubMed ID: 17305129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains.
    Lin X; Mou R; Cao Z; Xu P; Wu X; Zhu Z; Chen M
    Sci Total Environ; 2016 Nov; 569-570():97-104. PubMed ID: 27341110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lability, bioaccessibility, and ecological and health risks of anthropogenic toxic heavy metals in the arid calcareous soil around a nonferrous metal smelting area.
    Chu Z; Lin C; Yang K; Cheng H; Gu X; Wang B; Wu L; Ma J
    Chemosphere; 2022 Nov; 307(Pt 4):136200. PubMed ID: 36030943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1.
    Rizvi A; Khan MS
    Chemosphere; 2017 Oct; 185():942-952. PubMed ID: 28747006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent.
    Maity S; Bajirao Patil P; SenSharma S; Sarkar A
    Chemosphere; 2022 Nov; 307(Pt 4):136115. PubMed ID: 35995185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic and genomic analysis of multiple heavy metal-resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation.
    Sher S; Hussain SZ; Rehman A
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2243-2254. PubMed ID: 31927763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions.
    Tuzen M; Saygi KO; Usta C; Soylak M
    Bioresour Technol; 2008 Apr; 99(6):1563-70. PubMed ID: 17532628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.