BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36239822)

  • 1. A DFT study on N
    Haopramong N; Tontapha S; Ruangpornvisuti V; Sang-Aroon W
    J Mol Model; 2022 Oct; 28(11):362. PubMed ID: 36239822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-porphyrin: a potential catalyst for direct decomposition of N(2)O by theoretical reaction mechanism investigation.
    Maitarad P; Namuangruk S; Zhang D; Shi L; Li H; Huang L; Boekfa B; Ehara M
    Environ Sci Technol; 2014 Jun; 48(12):7101-10. PubMed ID: 24856812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the catalytic properties of the Au4 nanocluster for the conversion of methane-to-methanol: synergistic effects of metallic adatoms and a defective graphene support.
    Sirijaraensre J; Limtrakul J
    Phys Chem Chem Phys; 2015 Apr; 17(15):9706-15. PubMed ID: 25772613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT Study on the Catalytic Activity of ALD-Grown Diiron Oxide Nanoclusters for Partial Oxidation of Methane to Methanol.
    Barona M; Gaggioli CA; Gagliardi L; Snurr RQ
    J Phys Chem A; 2020 Feb; 124(8):1580-1592. PubMed ID: 32017850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations.
    Yu X; Zhong L; Li S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic oxidation of CH
    Zhang S; Lv X; Wang J; Wang T; Shan J
    J Mol Model; 2021 Nov; 27(12):346. PubMed ID: 34748110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Co
    Inayat A; Rocha-Meneses L; Ayoub M; Ullah S; Abdullah AZ; Naqvi SR; Bhat AH
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):72224-72235. PubMed ID: 37170050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane Oxidation to Methanol in Water.
    Freakley SJ; Dimitratos N; Willock DJ; Taylor SH; Kiely CJ; Hutchings GJ
    Acc Chem Res; 2021 Jun; 54(11):2614-2623. PubMed ID: 34008962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-innocent PNN ligand is important for CO oxidation by N
    Xie H; Zhang Y; Xiang C; Li Y; Fan T; Lei Q; Fang W
    Dalton Trans; 2018 Nov; 47(43):15324-15330. PubMed ID: 30306993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation.
    Tsai ML; Hadt RG; Vanelderen P; Sels BF; Schoonheydt RA; Solomon EI
    J Am Chem Soc; 2014 Mar; 136(9):3522-9. PubMed ID: 24524659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation of the Fe+-catalyzed oxidation of acetylene by N2O.
    Zhao L; Wang Y; Guo W; Shan H; Lu X; Yang T
    J Phys Chem A; 2008 Jun; 112(25):5676-83. PubMed ID: 18512896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the potential use of Fe-decorated B
    Hamadi H; Shakerzadeh E; Esrafili MD
    J Mol Graph Model; 2023 Jan; 118():108369. PubMed ID: 36401898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt
    Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT
    J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites.
    Göltl F; Bhandari S; Lebrón-Rodríguez EA; Gold JI; Hutton DJ; Zones SI; Hermans I; Dumesic JA; Mavrikakis M
    Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202403179. PubMed ID: 38574295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Study of Single Metal Atom Anchored on Black Phosphorus for Methane Oxidation to Methanol by Nitrous Oxide.
    Jiang WQ; Wang HJ; Su Y
    Chemistry; 2023 Aug; 29(44):e202301028. PubMed ID: 37221138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Insights into Cu-Based Catalytic Sites for the Direct Conversion of Methane to Methanol.
    Mao M; Liu L; Liu Z
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36363972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of methane and ethylene over Al incorporated N-doped graphene: A comparative mechanistic DFT study.
    Mousavian P; Esrafili MD; Sardroodi JJ
    J Mol Graph Model; 2022 Dec; 117():108284. PubMed ID: 35987185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient direct conversion of methane into methanol on CuZn hetero-diatomic catalysts with certain coordination spheres: a DFT study.
    Yang C; Liu C; Wang Y; Zhang HN; He QW; Tang DS; Wang XC
    Phys Chem Chem Phys; 2022 Oct; 24(39):24264-24270. PubMed ID: 36172737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations.
    Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C
    Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative theoretical study for the methanol dehydrogenation to CO over Pt3 and PtAu2 clusters.
    Zhong W; Liu Y; Zhang D
    J Mol Model; 2012 Jul; 18(7):3051-60. PubMed ID: 22160734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.