These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36240070)

  • 21. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic nano-aperture label-free imaging (PANORAMA).
    Ohannesian N; Misbah I; Lin SH; Shih WC
    Nat Commun; 2020 Nov; 11(1):5805. PubMed ID: 33199716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers.
    Jia P; Shi H; Liu R; Yan X; Sun X
    Opt Express; 2023 Dec; 31(26):44177-44189. PubMed ID: 38178495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical trapping force combining an optical fiber probe and an AFM metallic probe.
    Liu B; Yang L; Wang Y
    Opt Express; 2011 Feb; 19(4):3703-14. PubMed ID: 21369196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All optical dynamic nanomanipulation with active colloidal tweezers.
    Ghosh S; Ghosh A
    Nat Commun; 2019 Sep; 10(1):4191. PubMed ID: 31519902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic nano-tweezer based on square nanoplate tetramers.
    Jin Q; Wang L; Yan S; Wei H; Huang Y
    Appl Opt; 2018 Jul; 57(19):5328-5332. PubMed ID: 30117824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects.
    D'Orlando A; Bayle M; Louarn G; Humbert B
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiplexed Near-Field Optical Trapping Exploiting Anapole States.
    Conteduca D; Brunetti G; Barth I; Quinn SD; Ciminelli C; Krauss TF
    ACS Nano; 2023 Sep; 17(17):16695-16702. PubMed ID: 37603833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral.
    Tsai WY; Huang JS; Huang CB
    Nano Lett; 2014 Feb; 14(2):547-52. PubMed ID: 24392638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical Manipulation of nanoparticles by simultaneous electric and magnetic field enhancement within diabolo nanoantenna.
    Hameed N; Nouho Ali A; Baida FI
    Sci Rep; 2017 Oct; 7(1):12806. PubMed ID: 28993675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fano Resonance-Assisted All-Dielectric Array for Enhanced Near-Field Optical Trapping of Nanoparticles.
    Conteduca D; Khan SN; Martínez Ruiz MA; Bruce GD; Krauss TF; Dholakia K
    ACS Photonics; 2023 Dec; 10(12):4322-4328. PubMed ID: 38145167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer.
    Ndukaife JC; Kildishev AV; Nnanna AG; Shalaev VM; Wereley ST; Boltasseva A
    Nat Nanotechnol; 2016 Jan; 11(1):53-9. PubMed ID: 26524398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FEM analysis of a λ
    Seyyedmasoumian S; Attariabad A; Farmani A
    Appl Opt; 2022 Jan; 61(1):120-125. PubMed ID: 35200803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evanescent field trapping and propulsion of Janus particles along optical nanofibers.
    Tkachenko G; Truong VG; Esporlas CL; Sanskriti I; Nic Chormaic S
    Nat Commun; 2023 Mar; 14(1):1691. PubMed ID: 36973283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resonance optical manipulation of nano-objects based on nonlinear optical response.
    Kudo T; Ishihara H
    Phys Chem Chem Phys; 2013 Sep; 15(35):14595-610. PubMed ID: 23907601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.