These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36240277)

  • 1. Engineering DNA-based synthetic condensates with programmable material properties, compositions, and functionalities.
    Do S; Lee C; Lee T; Kim DN; Shin Y
    Sci Adv; 2022 Oct; 8(41):eabj1771. PubMed ID: 36240277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering synthetic biomolecular condensates.
    Dai Y; You L; Chilkoti A
    Nat Rev Bioeng; 2023 Apr; ():1-15. PubMed ID: 37359769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions.
    Lee M; Moon HC; Jeong H; Kim DW; Park HY; Shin Y
    Nat Commun; 2024 Apr; 15(1):3216. PubMed ID: 38622120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Protein Condensates That Inducibly Recruit and Release Protein Activity in Living Cells.
    Yoshikawa M; Yoshii T; Ikuta M; Tsukiji S
    J Am Chem Soc; 2021 May; 143(17):6434-6446. PubMed ID: 33890764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomolecular condensates in neurodegeneration and cancer.
    Spannl S; Tereshchenko M; Mastromarco GJ; Ihn SJ; Lee HO
    Traffic; 2019 Dec; 20(12):890-911. PubMed ID: 31606941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Growth Rate of DNA Condensate Droplets Increases with the Size of Participating Subunits.
    Agarwal S; Osmanovic D; Klocke MA; Franco E
    ACS Nano; 2022 Aug; 16(8):11842-11851. PubMed ID: 35867936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Condensates and Cell-Like Architectures from Amphiphilic DNA Nanostructures.
    Malouf L; Tanase DA; Di Michele L
    J Vis Exp; 2024 May; (207):. PubMed ID: 38884477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations.
    Sundaravadivelu Devarajan D; Wang J; Szała-Mendyk B; Rekhi S; Nikoubashman A; Kim YC; Mittal J
    Nat Commun; 2024 Mar; 15(1):1912. PubMed ID: 38429263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable Computational RNA Droplets Assembled via Kissing-Loop Interaction.
    Udono H; Fan M; Saito Y; Ohno H; Nomura SM; Shimizu Y; Saito H; Takinoue M
    ACS Nano; 2024 Jun; 18(24):15477-15486. PubMed ID: 38831645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Transcription-Translation in an Artificial Biomolecular Condensate.
    Schoenmakers LLJ; Yewdall NA; Lu T; André AAM; Nelissen FHT; Spruijt E; Huck WTS
    ACS Synth Biol; 2023 Jul; 12(7):2004-2014. PubMed ID: 37343188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase separation in biology and disease-a symposium report.
    Cable J; Brangwynne C; Seydoux G; Cowburn D; Pappu RV; Castañeda CA; Berchowitz LE; Chen Z; Jonikas M; Dernburg A; Mittag T; Fawzi NL
    Ann N Y Acad Sci; 2019 Sep; 1452(1):3-11. PubMed ID: 31199001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable synthetic biomolecular condensates for cellular control.
    Dai Y; Farag M; Lee D; Zeng X; Kim K; Son HI; Guo X; Su J; Peterson N; Mohammed J; Ney M; Shapiro DM; Pappu RV; Chilkoti A; You L
    Nat Chem Biol; 2023 Apr; 19(4):518-528. PubMed ID: 36747054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems.
    Lasker K; Boeynaems S; Lam V; Scholl D; Stainton E; Briner A; Jacquemyn M; Daelemans D; Deniz A; Villa E; Holehouse AS; Gitler AD; Shapiro L
    Nat Commun; 2022 Sep; 13(1):5643. PubMed ID: 36163138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic protein condensates for cellular and metabolic engineering.
    Qian ZG; Huang SC; Xia XX
    Nat Chem Biol; 2022 Dec; 18(12):1330-1340. PubMed ID: 36400990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onco-condensates: formation, multi-component organization, and biological functions.
    Xu C; Kim A; Corbin JM; Wang GG
    Trends Cancer; 2023 Sep; 9(9):738-751. PubMed ID: 37349246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-mediated demixing transition of low-density condensates.
    Kim T; Yoo J; Do S; Hwang DS; Park Y; Shin Y
    Nat Commun; 2023 Apr; 14(1):2425. PubMed ID: 37105967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein conformation and biomolecular condensates.
    Vazquez DS; Toledo PL; Gianotti AR; Ermácora MR
    Curr Res Struct Biol; 2022; 4():285-307. PubMed ID: 36164646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice.
    Fischer AAM; Robertson HB; Kong D; Grimm MM; Grether J; Groth J; Baltes C; Fliegauf M; Lautenschläger F; Grimbacher B; Ye H; Helms V; Weber W
    Small; 2024 Apr; ():e2311834. PubMed ID: 38573961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micellization: A new principle in the formation of biomolecular condensates.
    Yamazaki T; Yamamoto T; Hirose T
    Front Mol Biosci; 2022; 9():974772. PubMed ID: 36106018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.