These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36240279)

  • 1. Molecular insights on the crystalline cellulose-water interfaces via three-dimensional atomic force microscopy.
    Yurtsever A; Wang PX; Priante F; Morais Jaques Y; Miyazawa K; MacLachlan MJ; Foster AS; Fukuma T
    Sci Adv; 2022 Oct; 8(41):eabq0160. PubMed ID: 36240279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Structural Details of Chitin Nanocrystal-Water Interfaces by Three-Dimensional Atomic Force Microscopy.
    Yurtsever A; Wang PX; Priante F; Morais Jaques Y; Miyata K; MacLachlan MJ; Foster AS; Fukuma T
    Small Methods; 2022 Sep; 6(9):e2200320. PubMed ID: 35686343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscopy characterization of cellulose nanocrystals.
    Lahiji RR; Xu X; Reifenberger R; Raman A; Rudie A; Moon RJ
    Langmuir; 2010 Mar; 26(6):4480-8. PubMed ID: 20055370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane.
    Khanjanzadeh H; Behrooz R; Bahramifar N; Gindl-Altmutter W; Bacher M; Edler M; Griesser T
    Int J Biol Macromol; 2018 Jan; 106():1288-1296. PubMed ID: 28855133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies into interactions and interfacial characteristics between cellulose nanocrystals and bovine serum albumin.
    Hu X; Ma T; Lu S; Song Y
    Food Chem X; 2022 Mar; 13():100194. PubMed ID: 35499035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying the Contact Angle of Anisotropic Cellulose Nanocrystals: Effect on Interfacial Rheology and Structure.
    van den Berg MEH; Kuster S; Windhab EJ; Adamcik J; Mezzenga R; Geue T; Sagis LMC; Fischer P
    Langmuir; 2018 Sep; 34(37):10932-10942. PubMed ID: 30130966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanorod-Surfactant Assemblies and Their Interfacial Behavior at Liquid-Liquid Interfaces.
    Wu X; Yuan Q; Liu S; Shi S; Russell TP; Wang D
    ACS Macro Lett; 2019 May; 8(5):512-518. PubMed ID: 35619362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Rationalization of Self-Assembly of Cellulose Nanocrystals: Effect of Surface Modifications and Counterions.
    Garg M; Linares M; Zozoulenko I
    Biomacromolecules; 2020 Aug; 21(8):3069-3080. PubMed ID: 32619090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Surface Modification on Water Adsorption and Interfacial Mechanics of Cellulose Nanocrystals.
    Wei Z; Sinko R; Keten S; Luijten E
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8349-8358. PubMed ID: 29431992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air-Water Interface.
    Bertsch P; Fischer P
    Langmuir; 2019 Jun; 35(24):7937-7943. PubMed ID: 31090427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation.
    Ma T; Hu X; Lu S; Cui R; Zhao J; Hu X; Song Y
    Int J Biol Macromol; 2021 Aug; 184():405-414. PubMed ID: 34146558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid Crystalline Properties of Symmetric and Asymmetric End-Grafted Cellulose Nanocrystals.
    Delepierre G; Traeger H; Adamcik J; Cranston ED; Weder C; Zoppe JO
    Biomacromolecules; 2021 Aug; 22(8):3552-3564. PubMed ID: 34297531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How latex film formation and adhesion at the nanoscale correlate to performance of pressure sensitive adhesives with cellulose nanocrystals.
    Niinivaara E; Ouzas A; Fraschini C; Berry RM; Dubé MA; Cranston ED
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2206):20200330. PubMed ID: 34334024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy.
    Guo J; Jiang Y
    Acc Chem Res; 2022 Jun; 55(12):1680-1692. PubMed ID: 35678704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force pulling of single cellulose chains at the crystalline cellulose-liquid interface: a molecular dynamics study.
    Bergenstråhle M; Thormann E; Nordgren N; Berglund LA
    Langmuir; 2009 Apr; 25(8):4635-42. PubMed ID: 19231815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging.
    Zhang M; Chen G; Kumar R; Xu B
    Biotechnol Biofuels; 2013 Oct; 6(1):147. PubMed ID: 24119447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.