These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36240373)

  • 1. Ultralong waveguide grating antenna enabled by evanescent field modulation.
    Yao W; Huang Z; Chen J; Li W; Yu L; Zou Y; Zhao X; Duan J; Yao Y; Xu X
    Opt Lett; 2022 Oct; 47(20):5397-5400. PubMed ID: 36240373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Millimeter-long metamaterial surface-emitting antenna in the silicon photonics platform.
    Ginel-Moreno P; Sánchez-Postigo A; de-Oliva-Rubio J; Hadij-ElHouati A; Ye WN; Wangüemert-Pérez JG; Molina-Fernández Í; Schmid JH; Cheben P; Ortega-Moñux A
    Opt Lett; 2021 Aug; 46(15):3733-3736. PubMed ID: 34329268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subwavelength structure enabled ultra-long waveguide grating antenna.
    Chen J; Wang J; Li J; Yao Y; Sun Y; Tian J; Zou Y; Zhao X; Xu X
    Opt Express; 2021 May; 29(10):15133-15144. PubMed ID: 33985219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient optical antenna with small beam divergence in silicon waveguides.
    Ginel-Moreno P; Pereira-Martín D; Hadij-ElHouati A; Ye WN; Melati D; Xu DX; Janz S; Ortega-Moñux A; Wangüemert-Pérez JG; Halir R; Molina-Fernández Í; Schmid JH; Cheben P
    Opt Lett; 2020 Oct; 45(20):5668-5671. PubMed ID: 33057254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-division and spatial-division shared-aperture nanopatch antenna arrays for wide-angle optical beam scanning.
    Zeng YS; Qu SW; Wu JW
    Opt Express; 2020 Apr; 28(9):12805-12826. PubMed ID: 32403770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuously tunable true-time delay lines based on a one-dimensional grating waveguide for beam steering in phased array antennas.
    Wang G; Dai T; Jiang J; Guo X; Chen B; Wang Y; Yu H; Jiang X; Yang J
    Appl Opt; 2018 Jun; 57(18):4998-5003. PubMed ID: 30117958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional wide-angle waveguide grating antennas with flat-top far-field patterns for optical phased arrays.
    Guo Y; Guo Y; Li C; Zhou X; Huang Z; Zhang L
    Opt Express; 2023 Feb; 31(5):9072-9080. PubMed ID: 36860007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of low-cross-talk half-wavelength pitch waveguide array on a silicon-on-insulator platform.
    Chen C; Zhao X; Tang S; Liu X; Lv H
    Opt Lett; 2022 Jun; 47(12):2955-2958. PubMed ID: 35709024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon nitride optical phased array based on a grating antenna enabling wavelength-tuned beam steering.
    Im CS; Bhandari B; Lee KP; Kim SM; Oh MC; Lee SS
    Opt Express; 2020 Feb; 28(3):3270-3279. PubMed ID: 32121999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Monolithic 2D Optical Phased Arrays Heterogeneously Integrated with On-Chip Laser Arrays Based on SOI Photonic Platform.
    Yue J; Cui A; Wang F; Han L; Dai J; Sun X; Lin H; Wang C; Chen C; Zhang D
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip platform for a phased array with minimal beam divergence and wide field-of-view.
    Zadka M; Chang YC; Mohanty A; Phare CT; Roberts SP; Lipson M
    Opt Express; 2018 Feb; 26(3):2528-2534. PubMed ID: 29401791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip silicon optical phased array for two-dimensional beam steering.
    Kwong D; Hosseini A; Covey J; Zhang Y; Xu X; Subbaraman H; Chen RT
    Opt Lett; 2014 Feb; 39(4):941-4. PubMed ID: 24562247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Efficiency, Wide Working Bandwidth Antenna Based on SOI Platform for Optical Phased Array.
    Wang Z; Liao J; Xie Y; Sun Y; Li X; Li W
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient ultra-broad beam silicon nanophotonic antenna based on near-field phase engineering.
    Khajavi S; Melati D; Cheben P; Schmid JH; Ramos CAA; Ye WN
    Sci Rep; 2022 Nov; 12(1):18808. PubMed ID: 36335199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon nitride assisted 1×64 optical phased array based on a SOI platform.
    Wang Q; Wang S; Jia L; Cai Y; Yue W; Yu M
    Opt Express; 2021 Mar; 29(7):10509-10517. PubMed ID: 33820184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography.
    Benedikovic D; Alonso-Ramos C; Pérez-Galacho D; Guerber S; Vakarin V; Marcaud G; Le Roux X; Cassan E; Marris-Morini D; Cheben P; Boeuf F; Baudot C; Vivien L
    Opt Lett; 2017 Sep; 42(17):3439-3442. PubMed ID: 28957057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated waveguide true time delay beamforming system based on an SOI platform for 28  GHz millimeter-wave communication.
    Han Y; Shi S; Jin R; Wang Y; Qiu Q
    Appl Opt; 2020 Sep; 59(26):7770-7778. PubMed ID: 32976447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics.
    Antelius M; Gylfason KB; Sohlström H
    Opt Express; 2011 Feb; 19(4):3592-8. PubMed ID: 21369182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single-chip multi-beam steering optical phased array: design rules and simulations.
    Liu Y; Hao Z; Wang L; Xiong B; Sun C; Wang J; Li H; Han Y; Luo Y
    Opt Express; 2021 Mar; 29(5):7049-7059. PubMed ID: 33726213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffraction gratings based on a multilayer silicon nitride waveguide with high upward efficiency and large effective length.
    Li WL; Liu JW; Cheng GA; Huang QZ; Zheng RT; Wu XL
    Appl Opt; 2022 Apr; 61(10):2604-2609. PubMed ID: 35471329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.