These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 36240514)
1. Prioritizing Small Sets of Molecules for Synthesis through in-silico Tools: A Comparison of Common Ranking Methods. Breznik M; Ge Y; Bluck JP; Briem H; Hahn DF; Christ CD; Mortier J; Mobley DL; Meier K ChemMedChem; 2023 Jan; 18(1):e202200425. PubMed ID: 36240514 [TBL] [Abstract][Full Text] [Related]
2. How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations? Hao D; He X; Ji B; Zhang S; Wang J J Chem Inf Model; 2020 Dec; 60(12):6624-6633. PubMed ID: 33213150 [TBL] [Abstract][Full Text] [Related]
3. Advances in Docking. Sulimov VB; Kutov DC; Sulimov AV Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836 [TBL] [Abstract][Full Text] [Related]
4. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes. Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198 [TBL] [Abstract][Full Text] [Related]
5. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015. Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018 [TBL] [Abstract][Full Text] [Related]
6. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. Hou T; Wang J; Li Y; Wang W J Comput Chem; 2011 Apr; 32(5):866-77. PubMed ID: 20949517 [TBL] [Abstract][Full Text] [Related]
7. Insights into the Ligand Binding to Bromodomain-Containing Protein 9 (BRD9): A Guide to the Selection of Potential Binders by Computational Methods. De Vita S; Chini MG; Bifulco G; Lauro G Molecules; 2021 Nov; 26(23):. PubMed ID: 34885774 [TBL] [Abstract][Full Text] [Related]
8. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA. Greenidge PA; Kramer C; Mozziconacci JC; Sherman W J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271 [TBL] [Abstract][Full Text] [Related]
9. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3. He X; Man VH; Ji B; Xie XQ; Wang J J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery. Gioia D; Bertazzo M; Recanatini M; Masetti M; Cavalli A Molecules; 2017 Nov; 22(11):. PubMed ID: 29165360 [TBL] [Abstract][Full Text] [Related]
11. Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors. Lima Silva WJ; Ferreira de Freitas R J Comput Aided Mol Des; 2023 Sep; 37(9):407-418. PubMed ID: 37378817 [TBL] [Abstract][Full Text] [Related]
12. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes. Weng G; Wang E; Chen F; Sun H; Wang Z; Hou T Phys Chem Chem Phys; 2019 May; 21(19):10135-10145. PubMed ID: 31062799 [TBL] [Abstract][Full Text] [Related]
13. An efficient computational method for calculating ligand binding affinities. Suenaga A; Okimoto N; Hirano Y; Fukui K PLoS One; 2012; 7(8):e42846. PubMed ID: 22916168 [TBL] [Abstract][Full Text] [Related]
14. Protein-Ligand Binding Free Energy Calculations with FEP. Wang L; Chambers J; Abel R Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905 [TBL] [Abstract][Full Text] [Related]
15. Rescoring docking hit lists for model cavity sites: predictions and experimental testing. Graves AP; Shivakumar DM; Boyce SE; Jacobson MP; Case DA; Shoichet BK J Mol Biol; 2008 Mar; 377(3):914-34. PubMed ID: 18280498 [TBL] [Abstract][Full Text] [Related]
16. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization. Liu J; He X; Zhang JZ J Chem Inf Model; 2013 Jun; 53(6):1306-14. PubMed ID: 23651068 [TBL] [Abstract][Full Text] [Related]
17. Accurate Binding Free Energy Predictions in Fragment Optimization. Steinbrecher TB; Dahlgren M; Cappel D; Lin T; Wang L; Krilov G; Abel R; Friesner R; Sherman W J Chem Inf Model; 2015 Nov; 55(11):2411-20. PubMed ID: 26457994 [TBL] [Abstract][Full Text] [Related]
18. The impact of simulation time in predicting binding free energies using end-point approaches. Sokouti B; Dastmalchi S; Hamzeh-Mivehroud M J Bioinform Comput Biol; 2022 Oct; 20(5):2250024. PubMed ID: 36350600 [TBL] [Abstract][Full Text] [Related]
19. An integrated computational approach to identify GC minor groove binders using various molecular docking scoring functions, dynamics simulations and binding free energy calculations. Soni MN; Kumar SP; S R KJ; Rawal RM; Pandya HA J Biomol Struct Dyn; 2020 Aug; 38(13):3838-3855. PubMed ID: 31502527 [TBL] [Abstract][Full Text] [Related]
20. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. Cournia Z; Allen B; Sherman W J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]