These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36240711)
1. Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system. Zang Y; Hou X; Li Z; Li P; Sun Y; Yu B; Li M Water Res; 2022 Nov; 226():119213. PubMed ID: 36240711 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux. Akbariyeh S; Bartelt-Hunt S; Snow D; Li X; Tang Z; Li Y J Contam Hydrol; 2018 Apr; 211():15-25. PubMed ID: 29605158 [TBL] [Abstract][Full Text] [Related]
3. Simulation of spatial and temporal variation of nitrate leaching in the vadose zone of alluvial regions on a large regional scale. Feng W; Wang S; Tan K; Ma L; Hu C Sci Total Environ; 2024 Mar; 916():170114. PubMed ID: 38232832 [TBL] [Abstract][Full Text] [Related]
4. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: observations, calibrated models, simulations and agro-hydrological conclusions. Kurtzman D; Shapira RH; Bar-Tal A; Fine P; Russo D J Contam Hydrol; 2013 Aug; 151():93-104. PubMed ID: 23771101 [TBL] [Abstract][Full Text] [Related]
5. Tracing the Sources and Fate of NO Niu X; Jia X; Yang X; Wang J; Wei X; Wu L; Shao M Environ Sci Technol; 2022 Jul; 56(13):9335-9345. PubMed ID: 35731141 [TBL] [Abstract][Full Text] [Related]
6. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer. Baram S; Kurtzman D; Ronen Z; Peeters A; Dahan O J Environ Manage; 2014 Jan; 132():135-44. PubMed ID: 24295724 [TBL] [Abstract][Full Text] [Related]
7. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. Xin J; Liu Y; Chen F; Duan Y; Wei G; Zheng X; Li M Water Res; 2019 Nov; 165():114977. PubMed ID: 31446294 [TBL] [Abstract][Full Text] [Related]
8. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. Wang D; Li P; Mu D; Liu W; Chen Y; Fida M Sci Total Environ; 2024 Jan; 906():167481. PubMed ID: 37788773 [TBL] [Abstract][Full Text] [Related]
9. Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer. Huan H; Hu L; Yang Y; Jia Y; Lian X; Ma X; Jiang Y; Xi B Environ Int; 2020 Apr; 137():105532. PubMed ID: 32062435 [TBL] [Abstract][Full Text] [Related]
10. Evaluating nitrate transport and accumulation in the deep vadose zone of the intensive agricultural region, North China Plain. Liu M; Min L; Wu L; Pei H; Shen Y Sci Total Environ; 2022 Jun; 825():153894. PubMed ID: 35182628 [TBL] [Abstract][Full Text] [Related]
11. [Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River basin]. Su YZ; Yang X; Yang R Huan Jing Ke Xue; 2014 Oct; 35(10):3683-91. PubMed ID: 25693370 [TBL] [Abstract][Full Text] [Related]
12. The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in the Nebraska's groundwater system. Juntakut P; Snow DD; Haacker EMK; Ray C J Contam Hydrol; 2019 Jan; 220():33-48. PubMed ID: 30502887 [TBL] [Abstract][Full Text] [Related]
13. [Source of Groundwater Nitrate in Luanping Basin Based on Multi-environment Media Nitrogen Cycle and Isotopes]. Sun HY; Wei XF; Jia FC; Li DJ; Li J; Li X; Yin ZQ Huan Jing Ke Xue; 2020 Nov; 41(11):4936-4947. PubMed ID: 33124237 [TBL] [Abstract][Full Text] [Related]
14. Unveiling microbial community and function involved in anammox in paddy vadose under groundwater irrigation. Li H; Liang S; Chi Z; Wu H; Yan B Sci Total Environ; 2022 Nov; 849():157876. PubMed ID: 35940267 [TBL] [Abstract][Full Text] [Related]
16. The impact of dissolved organic nitrogen (DON) retention in the vadose zone on nitrogen leaching losses. Hao Y; Zheng T; Zheng X; Liu L; Jiang S; Cao M; Luo J Chemosphere; 2024 Oct; 366():143449. PubMed ID: 39362379 [TBL] [Abstract][Full Text] [Related]
17. Impacts of anthropogenic groundwater recharge (AGR) on nitrate dynamics in a phreatic aquifer revealed by hydrochemical and isotopic technologies. Cao X; Shi Y; He W; An T; Chen X; Zhang Z; Liu F; Zhao Y; Zhou P; Chen C; He J; He W Sci Total Environ; 2022 Sep; 839():156187. PubMed ID: 35618121 [TBL] [Abstract][Full Text] [Related]
18. Spatio-temporal variations of shallow and deep well groundwater nitrate concentrations along the Indus River floodplain aquifer in Pakistan. Khan SN; Yasmeen T; Riaz M; Arif MS; Rizwan M; Ali S; Tariq A; Jessen S Environ Pollut; 2019 Oct; 253():384-392. PubMed ID: 31325883 [TBL] [Abstract][Full Text] [Related]
19. Denitrification in the vadose zone: Modelling with percolating water prognosis and denitrification potential. Lenhart S; Ortmeyer F; Banning A J Contam Hydrol; 2021 Oct; 242():103843. PubMed ID: 34087531 [TBL] [Abstract][Full Text] [Related]
20. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media. Pang L; Lafogler M; Knorr B; McGill E; Saunders D; Baumann T; Abraham P; Close M Sci Total Environ; 2016 Apr; 550():60-68. PubMed ID: 26803685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]