These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36240727)

  • 1. Finger movement and coactivation predicted from intracranial brain activity using extended block-term tensor regression.
    Faes A; Hulle MMV
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36240727
    [No Abstract]   [Full Text] [Related]  

  • 2. Single Finger Trajectory Prediction From Intracranial Brain Activity Using Block-Term Tensor Regression With Fast and Automatic Component Extraction.
    Faes A; Camarrone F; Van Hulle MM
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):8897-8908. PubMed ID: 36395140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding of finger trajectory from ECoG using deep learning.
    Xie Z; Schwartz O; Prasad A
    J Neural Eng; 2018 Jun; 15(3):036009. PubMed ID: 29182152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject.
    Hotson G; McMullen DP; Fifer MS; Johannes MS; Katyal KD; Para MP; Armiger R; Anderson WS; Thakor NV; Wester BA; Crone NE
    J Neural Eng; 2016 Apr; 13(2):026017-26017. PubMed ID: 26863276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Offline Asynchronous Detection of Individual Finger Movement From Intracranial Brain Signals Using a Novel Multiway Approach.
    Camarrone F; Branco MP; Ramsey NF; Van Hulle MM
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2176-2187. PubMed ID: 33186097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and accurate decoding of finger movements from ECoG through Riemannian features and modern machine learning techniques.
    Yao L; Zhu B; Shoaran M
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35078156
    [No Abstract]   [Full Text] [Related]  

  • 7. Asynchronous decoding of finger movements from ECoG signals using long-range dependencies conditional random fields.
    Delgado Saa JF; Pesters Ad; Cetin M
    J Neural Eng; 2016 Jun; 13(3):036017. PubMed ID: 27138273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Multiway Partial Least Squares Regression.
    Camarrone F; Van Hulle MM
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):433-443. PubMed ID: 29993452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recursive Exponentially Weighted N-way Partial Least Squares Regression with Recursive-Validation of Hyper-Parameters in Brain-Computer Interface Applications.
    Eliseyev A; Auboiroux V; Costecalde T; Langar L; Charvet G; Mestais C; Aksenova T; Benabid AL
    Sci Rep; 2017 Nov; 7(1):16281. PubMed ID: 29176638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilinear Discriminative Spatial Patterns for Movement-Related Cortical Potential Based on EEG Classification with Tensor Representation.
    Cai Q; Yan J; Han H; Gong W; Wang H
    Comput Intell Neurosci; 2021; 2021():6634672. PubMed ID: 34135952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logistic-weighted regression improves decoding of finger flexion from electrocorticographic signals.
    Chen W; Liu X; Litt B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2629-32. PubMed ID: 25570530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic.
    Moly A; Costecalde T; Martel F; Martin M; Larzabal C; Karakas S; Verney A; Charvet G; Chabardes S; Benabid AL; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234665
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of distinct ECoG frequency features in decoding finger movement.
    Merino EC; Faes A; Van Hulle MM
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37963397
    [No Abstract]   [Full Text] [Related]  

  • 15. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex.
    Jorge A; Royston DA; Tyler-Kabara EC; Boninger ML; Collinger JL
    Neurosurgery; 2020 Sep; 87(4):630-638. PubMed ID: 32140722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding fingertip trajectory from electrocorticographic signals in humans.
    Nakanishi Y; Yanagisawa T; Shin D; Chen C; Kambara H; Yoshimura N; Fukuma R; Kishima H; Hirata M; Koike Y
    Neurosci Res; 2014 Aug; 85():20-7. PubMed ID: 24880133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoencoders for learning template spectrograms in electrocorticographic signals.
    Pailla T; Miller KJ; Gilja V
    J Neural Eng; 2019 Feb; 16(1):016025. PubMed ID: 30524070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
    Nason SR; Mender MJ; Vaskov AK; Willsey MS; Ganesh Kumar N; Kung TA; Patil PG; Chestek CA
    Neuron; 2021 Oct; 109(19):3164-3177.e8. PubMed ID: 34499856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent control of a brain-computer interface and natural overt movements.
    Bashford L; Wu J; Sarma D; Collins K; Rao RPN; Ojemann JG; Mehring C
    J Neural Eng; 2018 Dec; 15(6):066021. PubMed ID: 30303130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.