These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 36240894)
41. Preparation, characterization, and ex-vivo evaluation of curcumin-loaded niosomal nanoparticles on the equine sperm quality during cooled storage. Nasiri-Foomani N; Ebadi M; Hassani S; Zeinoaldini S; Saedi A; Samadi F Int J Biol Macromol; 2024 Apr; 264(Pt 1):130620. PubMed ID: 38447838 [TBL] [Abstract][Full Text] [Related]
42. Fabrication of a Soybean Bowman-Birk Inhibitor (BBI) Nanodelivery Carrier To Improve Bioavailability of Curcumin. Liu C; Cheng F; Yang X J Agric Food Chem; 2017 Mar; 65(11):2426-2434. PubMed ID: 28249113 [TBL] [Abstract][Full Text] [Related]
43. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Ramalingam P; Ko YT Colloids Surf B Biointerfaces; 2016 Mar; 139():52-61. PubMed ID: 26700233 [TBL] [Abstract][Full Text] [Related]
44. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Anitha A; Sreeranganathan M; Chennazhi KP; Lakshmanan VK; Jayakumar R Eur J Pharm Biopharm; 2014 Sep; 88(1):238-51. PubMed ID: 24815764 [TBL] [Abstract][Full Text] [Related]
45. Fabrication, Evaluation, and Antioxidant Properties of Carrier-Free Curcumin Nanoparticles. Wu J; Chen J; Wei Z; Zhu P; Li B; Qing Q; Chen H; Lin W; Lin J; Hong X; Yu F; Chen X Molecules; 2023 Jan; 28(3):. PubMed ID: 36770966 [TBL] [Abstract][Full Text] [Related]
46. Curcuminoid-loaded poly(methyl methacrylate) nanoparticles for cancer therapy. Sahu A; Solanki P; Mitra S Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):101-105. PubMed ID: 29593406 [TBL] [Abstract][Full Text] [Related]
47. Acidified sucralfate encapsulated chitosan derivative nanoparticles as oral vaccine adjuvant delivery enhancing mucosal and systemic immunity. Zhao Z; Qiao S; Jin Z; Li H; Yu H; Zhang C; Yin TH; Zhao K Int J Biol Macromol; 2024 Nov; 279(Pt 3):135424. PubMed ID: 39245128 [TBL] [Abstract][Full Text] [Related]
48. [pH-sensitive micelles loaded paclitaxel using carboxymethyl chitosan-palmitic acid mediated by cRGD]. Li JZ; Yuan ZQ; Yan M; Li MW; Zhang XN Yao Xue Xue Bao; 2016 Apr; 51(4):642-9. PubMed ID: 29860751 [TBL] [Abstract][Full Text] [Related]
49. Selection and Control of Process Conditions Enable the Preparation of Curcumin-Loaded Poly(lactic- Feltrin FDS; D'Angelo NA; Guarnieri JPO; Lopes AM; Lancellotti M; Lona LMF ACS Appl Mater Interfaces; 2023 Jun; 15(22):26496-26509. PubMed ID: 37219485 [TBL] [Abstract][Full Text] [Related]
50. Enhanced environmental stress resistance and functional properties of the curcumin-shellac nano-delivery system: Anti-flocculation of poly-γ-glutamic acid. Zhuang D; Wang Y; Wang S; Li R; Ahmad HN; Zhu J Int J Biol Macromol; 2024 May; 268(Pt 2):131607. PubMed ID: 38631573 [TBL] [Abstract][Full Text] [Related]
51. Hyaluronic Acid Modified Curcumin-Loaded Chitosan Nanoparticles Inhibit Chondrocyte Apoptosis to Attenuate Osteoarthritis via Upregulation of Activator Protein 1 and RUNX Family Transcription Factor 2. Wang J; Zhang L; Zhu J; Gu J; Wang X; Tao H J Biomed Nanotechnol; 2022 Jan; 18(1):144-157. PubMed ID: 35180907 [TBL] [Abstract][Full Text] [Related]
52. Chitosan coordination driven self-assembly for effective delivery of curcumin. Liang H; Sun X; Gao J; Zhou B Int J Biol Macromol; 2020 Dec; 165(Pt B):2267-2274. PubMed ID: 33098899 [TBL] [Abstract][Full Text] [Related]
53. Chondroitin sulfate functionalized palmitic acid and cysteine cografted-quaternized chitosan for CD44 and gut microbiota dual-targeted delivery of curcumin. Xie Y; Xu W; Jin Z; Zhao K Mater Today Bio; 2023 Jun; 20():100617. PubMed ID: 37441137 [TBL] [Abstract][Full Text] [Related]
54. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility. Guo S; Zhao Y; Luo S; Mu D; Li X; Zhong X; Jiang S; Zheng Z J Sci Food Agric; 2022 Sep; 102(12):5121-5131. PubMed ID: 35275410 [TBL] [Abstract][Full Text] [Related]
55. Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery. Facchi SP; Scariot DB; Bueno PV; Souza PR; Figueiredo LC; Follmann HD; Nunes CS; Monteiro JP; Bonafé EG; Nakamura CV; Muniz EC; Martins AF Int J Biol Macromol; 2016 Jun; 87():237-45. PubMed ID: 26930578 [TBL] [Abstract][Full Text] [Related]
56. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Li J; Jiang F; Chi Z; Han D; Yu L; Liu C Int J Biol Macromol; 2018 Jun; 112():413-421. PubMed ID: 29410267 [TBL] [Abstract][Full Text] [Related]
57. An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Rashwan AK; Karim N; Xu Y; Hanafy NAN; Li B; Mehanni AE; Taha EM; Chen W Crit Rev Food Sci Nutr; 2023; 63(29):9731-9751. PubMed ID: 35522080 [TBL] [Abstract][Full Text] [Related]
58. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. Shin GH; Chung SK; Kim JT; Joung HJ; Park HJ J Agric Food Chem; 2013 Nov; 61(46):11119-26. PubMed ID: 24175657 [TBL] [Abstract][Full Text] [Related]
59. Immune enhancement of N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan nanoparticles vaccine. Gao Y; Gong X; Yu S; Jin Z; Ruan Q; Zhang C; Zhao K Int J Biol Macromol; 2022 Nov; 220():183-192. PubMed ID: 35981671 [TBL] [Abstract][Full Text] [Related]
60. A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment. Hong W; Guo F; Yu N; Ying S; Lou B; Wu J; Gao Y; Ji X; Wang H; Li A; Wang G; Yang G Drug Des Devel Ther; 2021; 15():2843-2855. PubMed ID: 34234415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]