BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

691 related articles for article (PubMed ID: 36241013)

  • 1. Red blood cell-based vaccines for ameliorating cancer chemoimmunotherapy.
    Su L; Hao Y; Li R; Pan W; Ma X; Weng J; Min Y
    Acta Biomater; 2022 Dec; 154():401-411. PubMed ID: 36241013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing chemotherapy-induced tumor RNA nanoparticles to improve cancer chemoimmunotherapy.
    Su L; Pan W; Li X; Zhou X; Ma X; Min Y
    Acta Biomater; 2023 Mar; 158():698-707. PubMed ID: 36563773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monophosphoryl lipid A-assembled nanovaccines enhance tumor immunotherapy.
    Li R; Hao Y; Pan W; Wang W; Min Y
    Acta Biomater; 2023 Nov; 171():482-494. PubMed ID: 37708924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of Oncogene-Specific Tumor-Infiltrating T Cells through Combined Vaccine and αPD-1 Enable Sustained Antitumor Responses against Established HER2 Breast Cancer.
    Crosby EJ; Acharya CR; Haddad AF; Rabiola CA; Lei G; Wei JP; Yang XY; Wang T; Liu CX; Wagner KU; Muller WJ; Chodosh LA; Broadwater G; Hyslop T; Shepherd JH; Hollern DP; He X; Perou CM; Chai S; Ashby BK; Vincent BG; Snyder JC; Force J; Morse MA; Lyerly HK; Hartman ZC
    Clin Cancer Res; 2020 Sep; 26(17):4670-4681. PubMed ID: 32732224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.
    Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way.
    Yu X; Long Y; Chen B; Tong Y; Shan M; Jia X; Hu C; Liu M; Zhou J; Tang F; Lu H; Chen R; Xu P; Huang W; Ren J; Wan Y; Sun J; Li J; Jin G; Gong L
    J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36253000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy.
    McAuliffe J; Chan HF; Noblecourt L; Ramirez-Valdez RA; Pereira-Almeida V; Zhou Y; Pollock E; Cappuccini F; Redchenko I; Hill AV; Leung CSK; Van den Eynde BJ
    J Immunother Cancer; 2021 Sep; 9(9):. PubMed ID: 34479921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Th17-inducing dendritic cell vaccines stimulate effective CD4 T cell-dependent antitumor immunity in ovarian cancer that overcomes resistance to immune checkpoint blockade.
    Luo Y; Shreeder B; Jenkins JW; Shi H; Lamichhane P; Zhou K; Bahr DA; Kurian S; Jones KA; Daum JI; Dutta N; Necela BM; Cannon MJ; Block MS; Knutson KL
    J Immunother Cancer; 2023 Nov; 11(11):. PubMed ID: 37918918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner.
    Zhang QF; Li J; Jiang K; Wang R; Ge JL; Yang H; Liu SJ; Jia LT; Wang L; Chen BL
    Theranostics; 2020; 10(23):10619-10633. PubMed ID: 32929370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemotherapy-Induced Neoantigen Nanovaccines Enhance Checkpoint Blockade Cancer Immunotherapy.
    Chen G; Li X; Li R; Wu K; Lei Z; Dai R; Roche K; Wang AZ; Min Y
    ACS Nano; 2023 Oct; 17(19):18818-18831. PubMed ID: 37750443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies.
    Minnar CM; Chariou PL; Horn LA; Hicks KC; Palena C; Schlom J; Gameiro SR
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequentially pH-Responsive Drug-Delivery Nanosystem for Tumor Immunogenic Cell Death and Cooperating with Immune Checkpoint Blockade for Efficient Cancer Chemoimmunotherapy.
    Jiang M; Chen W; Yu W; Xu Z; Liu X; Jia Q; Guan X; Zhang W
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):43963-43974. PubMed ID: 34506118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CU06-1004-Induced Vascular Normalization Improves Immunotherapy by Modulating Tumor Microenvironment
    Park S; Oh JH; Park DJ; Zhang H; Noh M; Kim Y; Kim YS; Kim H; Kim YM; Ha SJ; Kwon YG
    Front Immunol; 2020; 11():620166. PubMed ID: 33584714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.
    Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR
    J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD4
    Xiao M; Xie L; Cao G; Lei S; Wang P; Wei Z; Luo Y; Fang J; Yang X; Huang Q; Xu L; Guo J; Wen S; Wang Z; Wu Q; Tang J; Wang L; Chen X; Chen C; Zhang Y; Yao W; Ye J; He R; Huang J; Ye L
    J Immunother Cancer; 2022 May; 10(5):. PubMed ID: 35580929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic cell therapy augments antitumor immunity triggered by CDK4/6 inhibition and immune checkpoint blockade by unleashing systemic CD4 T-cell responses.
    Kumar A; Ramani V; Bharti V; de Lima Bellan D; Saleh N; Uzhachenko R; Shen C; Arteaga C; Richmond A; Reddy SM; Vilgelm A
    J Immunother Cancer; 2023 May; 11(5):. PubMed ID: 37230537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of integrin αvβ6 sparks T-cell antitumor response and enhances immune checkpoint blockade therapy in colorectal cancer.
    Busenhart P; Montalban-Arques A; Katkeviciute E; Morsy Y; Van Passen C; Hering L; Atrott K; Lang S; Garzon JFG; Naschberger E; Hartmann A; Rogler G; Stürzl M; Spalinger MR; Scharl M
    J Immunother Cancer; 2022 Feb; 10(2):. PubMed ID: 35131862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Case Report:
    Huang JW; Kuo CL; Wang LT; Ma KS; Huang WY; Liu FC; Yang KD; Yang BH
    Front Immunol; 2021; 12():752563. PubMed ID: 35003064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor cell-intrinsic SETD2 inactivation sensitizes cancer cells to immune checkpoint blockade through the NR2F1-STAT1 pathway.
    Zheng X; Luo Y; Xiong Y; Liu X; Zeng C; Lu X; Wang X; Cheng Y; Wang S; Lan H; Wang K; Weng Z; Bi W; Gan X; Jia X; Wang L; Wang Y
    J Immunother Cancer; 2023 Dec; 11(12):. PubMed ID: 38056895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.