These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 36241031)

  • 1. Virtual coil augmentation for MR coil extrapoltion via deep learning.
    Yang C; Liao X; Zhang L; Zhang M; Liu Q
    Magn Reson Imaging; 2023 Jan; 95():1-11. PubMed ID: 36241031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable augmentation network for invertible MR coil compression.
    Liao X; Huang B; Wang S; Liang D; Liu Q
    Magn Reson Imaging; 2024 May; 108():116-128. PubMed ID: 38325727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unsupervised deep learning method for multi-coil cine MRI.
    Ke Z; Cheng J; Ying L; Zheng H; Zhu Y; Liang D
    Phys Med Biol; 2020 Dec; 65(23):235041. PubMed ID: 33263316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks.
    Lee D; Yoo J; Tak S; Ye JC
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1985-1995. PubMed ID: 29993390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction.
    Oh C; Chung JY; Han Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR Image Reconstruction Using Deep Density Priors.
    Tezcan KC; Baumgartner CF; Luechinger R; Pruessmann KP; Konukoglu E
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1633-1642. PubMed ID: 30571618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FFVN: An explicit feature fusion-based variational network for accelerated multi-coil MRI reconstruction.
    Zhang Z; Du H; Qiu B
    Magn Reson Imaging; 2023 Apr; 97():31-45. PubMed ID: 36586627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Domain Neumann Network with Sensitivity Maps for Parallel MRI Reconstruction.
    Lee JH; Kang J; Oh SH; Ye DH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities.
    Bian W; Chen Y; Ye X
    Magn Reson Imaging; 2022 Jun; 89():1-11. PubMed ID: 35122984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HASAN: Highly accurate sensitivity for auto-contrast-corrected pMRI reconstruction.
    Sajal MSR; Hasan MK
    Magn Reson Imaging; 2019 Jan; 55():153-170. PubMed ID: 30243832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-prior image-guided MRI reconstruction with dictionary learning.
    Li J; Liu Q; Zhao J
    Med Phys; 2019 Feb; 46(2):517-527. PubMed ID: 30548875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of MR surface coils on PET quantification.
    MacDonald LR; Kohlmyer S; Liu C; Lewellen TK; Kinahan PE
    Med Phys; 2011 Jun; 38(6):2948-56. PubMed ID: 21815368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning.
    Zhang C; Moeller S; Demirel OB; Uğurbil K; Akçakaya M
    Neuroimage; 2022 Aug; 256():119248. PubMed ID: 35487456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain knowledge augmentation of parallel MR image reconstruction using deep learning.
    Pawar K; Egan GF; Chen Z
    Comput Med Imaging Graph; 2021 Sep; 92():101968. PubMed ID: 34390918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.
    Ottom MA; Rahman HA; Dinov ID
    IEEE J Transl Eng Health Med; 2022; 10():1800508. PubMed ID: 35774412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning.
    Qiu D; Zhang S; Liu Y; Zhu J; Zheng L
    Comput Methods Programs Biomed; 2020 Apr; 187():105059. PubMed ID: 31582263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. k-Space deep learning for reference-free EPI ghost correction.
    Lee J; Han Y; Ryu JK; Park JY; Ye JC
    Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. k-Space-based coil combination via geometric deep learning for reconstruction of non-Cartesian MRSI data.
    Motyka S; Hingerl L; Strasser B; Hangel G; Heckova E; Agibetov A; Dorffner G; Gruber S; Trattning S; Bogner W
    Magn Reson Med; 2021 Nov; 86(5):2353-2367. PubMed ID: 34061405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DIMENSION: Dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training.
    Wang S; Ke Z; Cheng H; Jia S; Ying L; Zheng H; Liang D
    NMR Biomed; 2022 Apr; 35(4):e4131. PubMed ID: 31482598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.