BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 36241232)

  • 21. Nitro-oleic acid reduces thoracic aortic aneurysm progression in a mouse model of Marfan syndrome.
    Nettersheim FS; Lemties J; Braumann S; Geißen S; Bokredenghel S; Nies R; Hof A; Winkels H; Freeman BA; Klinke A; Rudolph V; Baldus S; Mehrkens D; Mollenhauer M; Adam M
    Cardiovasc Res; 2022 Jul; 118(9):2211-2225. PubMed ID: 34324651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell Type-Specific Contributions of the Angiotensin II Type 1a Receptor to Aorta Homeostasis and Aneurysmal Disease-Brief Report.
    Galatioto J; Caescu CI; Hansen J; Cook JR; Miramontes I; Iyengar R; Ramirez F
    Arterioscler Thromb Vasc Biol; 2018 Mar; 38(3):588-591. PubMed ID: 29371244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome.
    Chung AW; Au Yeung K; Sandor GG; Judge DP; Dietz HC; van Breemen C
    Circ Res; 2007 Aug; 101(5):512-22. PubMed ID: 17641224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term miR-29b suppression reduces aneurysm formation in a Marfan mouse model.
    Okamura H; Emrich F; Trojan J; Chiu P; Dalal AR; Arakawa M; Sato T; Penov K; Koyano T; Pedroza A; Connolly AJ; Rabinovitch M; Alvira C; Fischbein MP
    Physiol Rep; 2017 Apr; 5(8):. PubMed ID: 28455451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion of AT1a (Angiotensin II Type 1a) Receptor or Inhibition of Angiotensinogen Synthesis Attenuates Thoracic Aortopathies in Fibrillin1
    Chen JZ; Sawada H; Ye D; Katsumata Y; Kukida M; Ohno-Urabe S; Moorleghen JJ; Franklin MK; Howatt DA; Sheppard MB; Mullick AE; Lu HS; Daugherty A
    Arterioscler Thromb Vasc Biol; 2021 Oct; 41(10):2538-2550. PubMed ID: 34407634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomics reveals Rictor as a noncanonical TGF-β signaling target during aneurysm progression in Marfan mice.
    Parker SJ; Stotland A; MacFarlane E; Wilson N; Orosco A; Venkatraman V; Madrid K; Gottlieb R; Dietz HC; Van Eyk JE
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1112-H1126. PubMed ID: 30004239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circulating transforming growth factor-beta in Marfan syndrome.
    Matt P; Schoenhoff F; Habashi J; Holm T; Van Erp C; Loch D; Carlson OD; Griswold BF; Fu Q; De Backer J; Loeys B; Huso DL; McDonnell NB; Van Eyk JE; Dietz HC;
    Circulation; 2009 Aug; 120(6):526-32. PubMed ID: 19635970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term effects of losartan on structure and function of the thoracic aorta in a mouse model of Marfan syndrome.
    Yang HH; Kim JM; Chum E; van Breemen C; Chung AW
    Br J Pharmacol; 2009 Nov; 158(6):1503-12. PubMed ID: 19814725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IL-6 regulates extracellular matrix remodeling associated with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of severe Marfan syndrome.
    Ju X; Ijaz T; Sun H; Lejeune W; Vargas G; Shilagard T; Recinos A; Milewicz DM; Brasier AR; Tilton RG
    J Am Heart Assoc; 2014 Jan; 3(1):e000476. PubMed ID: 24449804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transforming Growth Factor β Receptor Type I Inhibitor, Galunisertib, Has No Beneficial Effects on Aneurysmal Pathological Changes in Marfan Mice.
    Park JH; Kim MS; Ham S; Park ES; Kim KL; Suh W
    Biomol Ther (Seoul); 2020 Jan; 28(1):98-103. PubMed ID: 31284709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm.
    Oller J; Gabandé-Rodríguez E; Ruiz-Rodríguez MJ; Desdín-Micó G; Aranda JF; Rodrigues-Diez R; Ballesteros-Martínez C; Blanco EM; Roldan-Montero R; Acuña P; Forteza Gil A; Martín-López CE; Nistal JF; Lino Cardenas CL; Lindsay ME; Martín-Ventura JL; Briones AM; Redondo JM; Mittelbrunn M
    Circulation; 2021 May; 143(21):2091-2109. PubMed ID: 33709773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-Cell Transcriptomic Profiling of Vascular Smooth Muscle Cell Phenotype Modulation in Marfan Syndrome Aortic Aneurysm.
    Pedroza AJ; Tashima Y; Shad R; Cheng P; Wirka R; Churovich S; Nakamura K; Yokoyama N; Cui JZ; Iosef C; Hiesinger W; Quertermous T; Fischbein MP
    Arterioscler Thromb Vasc Biol; 2020 Sep; 40(9):2195-2211. PubMed ID: 32698686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerated Marfan syndrome model recapitulates established signaling pathways.
    Gensicke NM; Cavanaugh NB; Andersen ND; Huang T; Qian L; Dyle MC; Turek JW
    J Thorac Cardiovasc Surg; 2020 May; 159(5):1719-1726. PubMed ID: 31272746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impaired vascular contractility and aortic wall degeneration in fibulin-4 deficient mice: effect of angiotensin II type 1 (AT1) receptor blockade.
    Moltzer E; te Riet L; Swagemakers SM; van Heijningen PM; Vermeij M; van Veghel R; Bouhuizen AM; van Esch JH; Lankhorst S; Ramnath NW; de Waard MC; Duncker DJ; van der Spek PJ; Rouwet EV; Danser AH; Essers J
    PLoS One; 2011; 6(8):e23411. PubMed ID: 21858106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm.
    Jiménez-Altayó F; Meirelles T; Crosas-Molist E; Sorolla MA; Del Blanco DG; López-Luque J; Mas-Stachurska A; Siegert AM; Bonorino F; Barberà L; García C; Condom E; Sitges M; Rodríguez-Pascual F; Laurindo F; Schröder K; Ros J; Fabregat I; Egea G
    Free Radic Biol Med; 2018 Apr; 118():44-58. PubMed ID: 29471108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of Notch3 Activation on Aortic Aneurysm Development in Marfan Syndrome.
    Jespersen K; Li C; Batra R; Stephenson CA; Harding P; Sestak K; Foley RT; Greene H; Meisinger T; Cook JR; Baxter BT; Xiong W
    J Immunol Res; 2022; 2022():7538649. PubMed ID: 35211631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model.
    Hibender S; Franken R; van Roomen C; Ter Braake A; van der Made I; Schermer EE; Gunst Q; van den Hoff MJ; Lutgens E; Pinto YM; Groenink M; Zwinderman AH; Mulder BJ; de Vries CJ; de Waard V
    Arterioscler Thromb Vasc Biol; 2016 Aug; 36(8):1618-26. PubMed ID: 27283746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibrillin-1-regulated miR-122 has a critical role in thoracic aortic aneurysm formation.
    Zhang RM; Tiedemann K; Muthu ML; Dinesh NEH; Komarova S; Ramkhelawon B; Reinhardt DP
    Cell Mol Life Sci; 2022 May; 79(6):314. PubMed ID: 35606547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Renal cystic disease in the Fbn1
    Hibender S; Wanga S; van der Made I; Vos M; Mulder BJ; Balm R; de Vries CJ; de Waard V
    Cardiovasc Pathol; 2019; 38():1-6. PubMed ID: 30359839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting feed-forward signaling of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ axis with anti-TGFβ and folic acid attenuates formation of aortic aneurysms: Novel mechanisms and therapeutics.
    Huang K; Wang Y; Siu KL; Zhang Y; Cai H
    Redox Biol; 2021 Jan; 38():101757. PubMed ID: 33126053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.