BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3624125)

  • 1. Cardiac output by rebreathing in patients with cardiopulmonary diseases.
    Kallay MC; Hyde RW; Smith RJ; Rothbard RL; Schreiner BF
    J Appl Physiol (1985); 1987 Jul; 63(1):201-10. PubMed ID: 3624125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uneven gas mixing during rebreathing assessed by simultaneously measuring dead space.
    Petrini MF; Peterson BT; Hyde RW; Lam V; Utell MJ; Kallay MC
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Oct; 53(4):930-9. PubMed ID: 7153127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the rebreathing pattern on pulmonary tissue volume and capillary blood flow.
    Kallay MC; Hyde RW; Fahey PJ; Utell MJ; Peterson BT; Ortiz CR
    J Appl Physiol (1985); 1985 Jun; 58(6):1881-94. PubMed ID: 4008408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ventilation and perfusion imbalance on inert gas rebreathing variables.
    Friedman M; Wilkins SA; Rothfeld AF; Bromberg PA
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Feb; 56(2):364-9. PubMed ID: 6323367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive measurement of cardiac output by a single breath constant expiratory technique.
    Elkayam U; Wilson AF; Morrison J; Meltzer P; Davis J; Klosterman P; Louvier J; Henry WL
    Thorax; 1984 Feb; 39(2):107-13. PubMed ID: 6701821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary parenchymal tissue volume and pulmonary capillary blood flow in normal subjects.
    González Mangado N; Barberà Mir JA; Peces-Barba G; Vallejo Galbete J; Lahoz Navarro F
    Respiration; 1986; 50(1):9-17. PubMed ID: 3726290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulmonary tissue volume in dogs during pulmonary edema.
    Peterson BT; Petrini MF; Hyde RW; Schreiner BF
    J Appl Physiol Respir Environ Exerc Physiol; 1978 May; 44(5):782-95. PubMed ID: 649478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive determination of cardiac output by a modified acetylene rebreathing procedure utilizing mass spectrometer measurements.
    Triebwasser JH; Johnson RL; Burpo RP; Campbell JC; Reardon WC; Blomqvist CG
    Aviat Space Environ Med; 1977 Mar; 48(3):203-9. PubMed ID: 857797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusing capacity, membrane diffusing capacity, capillary blood volume, pulmonary tissue volume, and cardiac output measured by a rebreathing technique.
    Sackner MA; Greeneltch D; Heiman MS; Epstein S; Atkins N
    Am Rev Respir Dis; 1975 Feb; 111(2):157-65. PubMed ID: 1111403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of rebreathing O2 consumption in humans with normal and diseased lungs.
    Kallay MC; Hyde RW; Smith RJ
    J Appl Physiol (1985); 1990 Apr; 68(4):1443-52. PubMed ID: 2347786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-sample reproducibility estimates: an example using rebreathing measurements.
    Jensen RL; Crapo RO; Mason JD; Yanowitz FG
    J Appl Physiol (1985); 1990 Apr; 68(4):1717-21. PubMed ID: 2347809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of DLCO and cardiac output from expired gas slopes with cardiogenic oscillations.
    Brenner M; Mukai D; Crook D; Tran J; Cheng G; Wilson AF
    Respir Physiol; 1995 Jan; 99(1):147-55. PubMed ID: 7740203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rest and exercise cardiac output and diffusing capacity assessed by a single slow exhalation of methane, acetylene, and carbon monoxide.
    Ramage JE; Coleman RE; MacIntyre NR
    Chest; 1987 Jul; 92(1):44-50. PubMed ID: 3297519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary tissue volume measured by acetylene rebreathing under artificial ventilation.
    Mizuno K; Ichinose Y; Ishii H; Nishi I
    Respirology; 2000 Jun; 5(2):147-52. PubMed ID: 10894104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new noninvasive method for the simultaneous determination of cardiac output, VA/QC disparity, and the magnitude of peripheral perfusion, suitable for use in the critically ill patient.
    Geisler FH; Farrell EJ; Siegel JH
    J Trauma; 1978 Nov; 18(11):751-65. PubMed ID: 712870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing Assumptions for the Use of Non-invasive Cardiac Output Measurement Techniques During Exercise in COPD.
    Perrault H; Richard R; Kapchinsky S; Baril J; Bourbeau J; Taivassalo T
    COPD; 2016; 13(1):75-81. PubMed ID: 26408087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of oscillations in alveolar gas concentrations in the analysis of rebreathing data.
    Weisiger KH; Swanson GD
    J Appl Physiol (1985); 1986 Sep; 61(3):1104-13. PubMed ID: 3759749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision and accuracy of a noninvasive inert gas washin method for determination of cardiac output in men.
    Nielsen OW; Hansen S; Grønlund J
    J Appl Physiol (1985); 1994 Apr; 76(4):1560-5. PubMed ID: 8045833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the CO2 rebreathing cardiac output method in seriously ill patients.
    Franciosa JA
    Circulation; 1977 Mar; 55(3):449-55. PubMed ID: 319921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of pulmonary disease on noninvasive measurement of cardiac output by the inert gas rebreathing method.
    Saur J; Trinkmann F; Doesch C; Scherhag A; Brade J; Schoenberg SO; Borggrefe M; Kaden JJ; Papavassiliu T
    Lung; 2010 Oct; 188(5):433-40. PubMed ID: 20676666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.