These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36241274)

  • 41. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application.
    Chatterjee S; Chi-Leung Hui P
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31336916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants.
    Zhang S; Vanessa C; Khan A; Ali N; Malik S; Shah S; Bilal M; Yang Y; Akhter MS; Iqbal HMN
    Chemosphere; 2022 Oct; 305():135291. PubMed ID: 35760128
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cyclodextrin polymers as highly effective adsorbents for removal and recovery of polychlorobiphenyl (PCB) contaminants in insulating oil.
    Kawano S; Kida T; Miyawaki K; Noguchi Y; Kato E; Nakano T; Akashi M
    Environ Sci Technol; 2014 Jul; 48(14):8094-100. PubMed ID: 24946276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclodextrin-Enabled Polymer Composites for Packaging
    Szente L; Fenyvesi É
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29954121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of polysaccharide-based metal organic framework membranes in separation science.
    Musarurwa H; Tavengwa NT
    Carbohydr Polym; 2022 Jan; 275():118743. PubMed ID: 34742445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enantioselective liquid-liquid extraction of tryptophan enantiomers by a recyclable aqueous biphasic system based on stimuli-responsive polymers.
    Ma S; Li F; Tan Z
    J Chromatogr A; 2021 Oct; 1656():462532. PubMed ID: 34525428
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tuning the sorption ability of hydroxyapatite/carbon composites for the simultaneous remediation of wastewaters containing organic-inorganic pollutants.
    Ferri M; Campisi S; Polito L; Shen J; Gervasini A
    J Hazard Mater; 2021 Oct; 420():126656. PubMed ID: 34329080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A review on remediation of dye adulterated system by ecologically innocuous "biopolymers/natural gums-based composites".
    Abbasi A; Khatoon F; Ikram S
    Int J Biol Macromol; 2023 Mar; 231():123240. PubMed ID: 36639083
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of phenols in water using chitosan-conjugated thermo-responsive polymers.
    Saitoh T; Asano K; Hiraide M
    J Hazard Mater; 2011 Jan; 185(2-3):1369-73. PubMed ID: 21074940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stimuli-Responsive Polysaccharide Hydrogels and Their Composites for Wound Healing Applications.
    Psarrou M; Mitraki A; Vamvakaki M; Kokotidou C
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850269
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Advances in Stimuli-Responsive Commodity Polymers.
    Wang S; Liu Q; Li L; Urban MW
    Macromol Rapid Commun; 2021 Sep; 42(18):e2100054. PubMed ID: 33749047
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclodextrin-based strategies for removal of persistent organic pollutants.
    Wacławek S; Krawczyk K; Silvestri D; Padil VVT; Řezanka M; Černík M; Jaroniec M
    Adv Colloid Interface Sci; 2022 Dec; 310():102807. PubMed ID: 36384078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chitosan-based blends for biomedical applications.
    Seidi F; Khodadadi Yazdi M; Jouyandeh M; Dominic M; Naeim H; Nezhad MN; Bagheri B; Habibzadeh S; Zarrintaj P; Saeb MR; Mozafari M
    Int J Biol Macromol; 2021 Jul; 183():1818-1850. PubMed ID: 33971230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 56. β-Cyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water.
    Alzate-Sánchez DM; Ling Y; Li C; Frank BP; Bleher R; Fairbrother DH; Helbling DE; Dichtel WR
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8089-8096. PubMed ID: 30715844
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective Removal of the Genotoxic Compound 2-Aminopyridine in Water using Molecularly Imprinted Polymers Based on Magnetic Chitosan and β-Cyclodextrin.
    Zhang W; Zhu Z; Zhang H; Qiu Y
    Int J Environ Res Public Health; 2017 Aug; 14(9):. PubMed ID: 28858259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption.
    Tahir N; Bhatti HN; Iqbal M; Noreen S
    Int J Biol Macromol; 2017 Jan; 94(Pt A):210-220. PubMed ID: 27720967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances in the development of biopolymeric adsorbents for the extraction of metabolites from nutraceuticals with emphasis on Solanaceae and subsequent pharmacological applications.
    Mokgehle TM; Madala N; Gitari WM; Tavengwa NT
    Carbohydr Polym; 2021 Jul; 264():118049. PubMed ID: 33910751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis.
    Zhang J; Zhang M; Tang K; Verpoort F; Sun T
    Small; 2014 Jan; 10(1):32-46. PubMed ID: 23852653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.