These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36241775)

  • 1. Effect of Texture and Surface Chemistry on Deagglomeration and Powder Retention in Capsule-Based Dry Powder Inhaler.
    Groß R; Berkenfeld K; Schulte C; Ebert A; Sule S; Sule A; Lamprecht A
    AAPS PharmSciTech; 2022 Oct; 23(7):281. PubMed ID: 36241775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications.
    Behara SR; Farkas DR; Hindle M; Longest PW
    Pharm Res; 2014 Feb; 31(2):360-72. PubMed ID: 23949304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning aerosol performance using the multibreath Orbital® dry powder inhaler device: controlling delivery parameters and aerosol performance via modification of puck orifice geometry.
    Zhu B; Young PM; Ong HX; Crapper J; Flodin C; Qiao EL; Phillips G; Traini D
    J Pharm Sci; 2015 Jul; 104(7):2169-76. PubMed ID: 25931324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation of novel dry powder inhalation for fluticasone propionate and salmeterol xinafoate with capsule-based device.
    Kim KS; Kim JH; Jin SG; Kim DW; Kim JO; Yong CS; Youn YS; Oh KT; Woo JS; Choi HG
    Pharm Dev Technol; 2018 Feb; 23(2):158-166. PubMed ID: 28612675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative approach to predicting lung deposition profiles of pharmaceutical powder aerosols.
    Yaqoubi S; Chan HK; Nokhodchi A; Dastmalchi S; Alizadeh AA; Barzegar-Jalali M; Adibkia K; Hamishehkar H
    Int J Pharm; 2021 Jun; 602():120568. PubMed ID: 33812969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical stability of dry powder inhaler formulations.
    Shetty N; Cipolla D; Park H; Zhou QT
    Expert Opin Drug Deliv; 2020 Jan; 17(1):77-96. PubMed ID: 31815554
    [No Abstract]   [Full Text] [Related]  

  • 8. The clinical relevance of dry powder inhaler performance for drug delivery.
    Demoly P; Hagedoorn P; de Boer AH; Frijlink HW
    Respir Med; 2014 Aug; 108(8):1195-203. PubMed ID: 24929253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.
    Tan BMJ; Chan LW; Heng PWS
    Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of capsule dosing techniques for use in dry powder inhalers.
    Edwards D
    Ther Deliv; 2010 Jul; 1(1):195-201. PubMed ID: 22816126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Low Air Volume Dry Powder Inhalers (LV-DPI) when Aerosolizing Excipient Enhanced Growth (EEG) Surfactant Powder Formulations.
    Boc S; Momin MAM; Farkas DR; Longest W; Hindle M
    AAPS PharmSciTech; 2021 Apr; 22(4):135. PubMed ID: 33860378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Roughness on the Dispersion of Dry Powders for Inhalation: a Dynamic Visualization Perspective.
    Kou X; Heng PWS; Chan LW; Wereley ST; Carvajal MT
    AAPS PharmSciTech; 2019 Jul; 20(7):271. PubMed ID: 31363868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Modelling of Agglomeration and Deagglomeration in Dry Powder Inhalers: A Review.
    Yang J; Wu CY; Adams M
    Curr Pharm Des; 2015; 21(40):5915-22. PubMed ID: 26446462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Different Effects of Inhaler Design on the Aerosol Performance of Drug-Only and Carrier-Based DPI Formulations. Part 1: Grid Structure.
    Leung CMS; Tong Z; Zhou QT; Chan JGY; Tang P; Sun S; Yang R; Chan HK
    AAPS J; 2016 Sep; 18(5):1159-1167. PubMed ID: 27161214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a High-Dose Infant Air-Jet Dry Powder Inhaler (DPI) with Passive Cyclic Loading of the Formulation.
    Howe C; Momin MAM; Aladwani G; Hindle M; Longest PW
    Pharm Res; 2022 Dec; 39(12):3317-3330. PubMed ID: 36253630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler.
    Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R
    Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A counter-swirl design concept for dry powder inhalers.
    Chaugule V; Dos Reis LG; Fletcher DF; Young PM; Traini D; Soria J
    Int J Pharm; 2024 Jan; 650():123694. PubMed ID: 38081562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancement of the Infant Air-Jet Dry Powder Inhaler (DPI): Evaluation of Different Positive-Pressure Air Sources and Flow Rates.
    Howe C; Momin MAM; Farkas DR; Bonasera S; Hindle M; Longest PW
    Pharm Res; 2021 Sep; 38(9):1615-1632. PubMed ID: 34462876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.