BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36241916)

  • 1. Leuconostoc mesenteroides utilizes glucose fermentation to produce electricity and ameliorates high-fat diet-induced abdominal fat mass.
    Pham MT; Tran TD; Zayabaatar E
    Arch Microbiol; 2022 Oct; 204(11):670. PubMed ID: 36241916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leuconostoc mesenteroides mediates an electrogenic pathway to attenuate the accumulation of abdominal fat mass induced by high fat diet.
    Pham MT; Yang JJ; Balasubramaniam A; Rahim AR; Adi P; Do TTM; Herr DR; Huang CM
    Sci Rep; 2020 Dec; 10(1):21916. PubMed ID: 33318546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of electricity and reduction of high-fat diet-induced IL-6 by glucose fermentation of Leuconostoc mesenteroides.
    Yang JJ; Rahim AR; Yang AJ; Chuang TH; Huang CM
    Biochem Biophys Res Commun; 2020 Dec; 533(4):651-656. PubMed ID: 33008603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse Abdominal Fat Depots Reduced by Butyric Acid-Producing
    Yang JJ; Pham MT; Rahim AR; Chuang TH; Hsieh MF; Huang CM
    Microorganisms; 2020 Aug; 8(8):. PubMed ID: 32756446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice.
    Traisaeng S; Batsukh A; Chuang TH; Herr DR; Huang YF; Chimeddorj B; Huang CM
    Sci Rep; 2020 May; 10(1):7928. PubMed ID: 32404878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host metabolic benefits of prebiotic exopolysaccharides produced by
    Miyamoto J; Shimizu H; Hisa K; Matsuzaki C; Inuki S; Ando Y; Nishida A; Izumi A; Yamano M; Ushiroda C; Irie J; Katayama T; Ohno H; Itoh H; Yamamoto K; Kimura I
    Gut Microbes; 2023; 15(1):2161271. PubMed ID: 36604628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of
    Yang H; Wu H; Gao L; Jia H; Zhang Y; Cui Z; Li Y
    J Microbiol Biotechnol; 2016 Dec; 26(12):2148-2158. PubMed ID: 27666995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris.
    Özcan E; Selvi SS; Nikerel E; Teusink B; Toksoy Öner E; Çakır T
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3153-3165. PubMed ID: 30712128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria.
    Koduru L; Kim Y; Bang J; Lakshmanan M; Han NS; Lee DY
    Sci Rep; 2017 Nov; 7(1):15721. PubMed ID: 29147021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gsy, a novel glucansucrase from Leuconostoc mesenteroides, mediates the formation of cell aggregates in response to oxidative stress.
    Yan M; Han J; Xu X; Liu L; Gao C; Zheng H; Chen Y; Tao Y; Zhou H; Li Y; Wu Z
    Sci Rep; 2016 Dec; 6():38122. PubMed ID: 27924943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leuconostoc mesenteroides subsp. mesenteroides SD23 Prevents Metabolic Dysfunction Associated with High-Fat Diet-Induced Obesity in Male Mice.
    Castro-Rodríguez DC; Reyes-Castro LA; Vega CC; Rodríguez-González GL; Yáñez-Fernández J; Zambrano E
    Probiotics Antimicrob Proteins; 2020 Jun; 12(2):505-516. PubMed ID: 31129870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the spoilage heterogeneity of meat-borne Leuconostoc mesenteroides by metabonomics and in-situ analysis.
    Chen S; Liu S; Ma J; Xu X; Wang H
    Food Res Int; 2022 Jun; 156():111365. PubMed ID: 35650983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in Flavonoid Composition and Antioxidative Activity during Fermentation of Onion (Allium cepa L.) by Leuconostoc mesenteroides with Different Salt Concentrations.
    Lee YG; Cho JY; Kim YM; Moon JH
    J Food Sci; 2016 Jun; 81(6):C1385-93. PubMed ID: 27175820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon.
    Li X; Wei X; Sun Y; Du J; Li X; Xun Z; Li YC
    Am J Physiol Gastrointest Liver Physiol; 2019 Oct; 317(4):G453-G462. PubMed ID: 31411504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation.
    Jung JY; Lee SH; Lee HJ; Seo HY; Park WS; Jeon CO
    Int J Food Microbiol; 2012 Feb; 153(3):378-87. PubMed ID: 22189023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the
    Peng YW; Jin HX
    J Microbiol Biotechnol; 2018 Dec; 28(12):2009-2018. PubMed ID: 30304917
    [No Abstract]   [Full Text] [Related]  

  • 17. Aroma formation in retentostat co-cultures of Lactococcus lactis and Leuconostoc mesenteroides.
    van Mastrigt O; Egas RA; Abee T; Smid EJ
    Food Microbiol; 2019 Sep; 82():151-159. PubMed ID: 31027769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity.
    Yi YJ; Lim JM; Gu S; Lee WK; Oh E; Lee SM; Oh BT
    J Microbiol; 2017 Apr; 55(4):296-303. PubMed ID: 28361342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the carbohydrate metabolic characteristics of Leuconostoc mesenteroides J18 through metabolite and transcriptome analyses.
    Hye Baek J; Min Han D; Gyu Choi D; Ok Jeon C
    Food Chem; 2024 Mar; 435():137594. PubMed ID: 37804726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.