These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36241972)

  • 1. MSPCD: predicting circRNA-disease associations via integrating multi-source data and hierarchical neural network.
    Deng L; Liu D; Li Y; Wang R; Liu J; Zhang J; Liu H
    BMC Bioinformatics; 2022 Oct; 23(Suppl 3):427. PubMed ID: 36241972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network.
    Lan W; Dong Y; Chen Q; Zheng R; Liu J; Pan Y; Chen YP
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association.
    Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations.
    Guo LX; Wang L; You ZH; Yu CQ; Hu ML; Zhao BW; Li Y
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepciRGO: functional prediction of circular RNAs through hierarchical deep neural networks using heterogeneous network features.
    Deng L; Lin W; Wang J; Zhang J
    BMC Bioinformatics; 2020 Nov; 21(1):519. PubMed ID: 33183227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network.
    Peng L; Yang C; Chen Y; Liu W
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting circRNA-drug sensitivity associations via graph attention auto-encoder.
    Deng L; Liu Z; Qian Y; Zhang J
    BMC Bioinformatics; 2022 May; 23(1):160. PubMed ID: 35508967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding.
    Guo LX; You ZH; Wang L; Yu CQ; Zhao BW; Ren ZH; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MPCLCDA: predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning.
    Liu W; Tang T; Lu X; Fu X; Yang Y; Peng L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A feature extraction method based on noise reduction for circRNA-miRNA interaction prediction combining multi-structure features in the association networks.
    Wang XF; Yu CQ; You ZH; Li LP; Huang WZ; Ren ZH; Li YC; Wei MM
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36971393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circRNA-disease associations prediction.
    Liang S; Liu S; Song J; Lin Q; Zhao S; Li S; Li J; Liang S; Wang J
    BMC Bioinformatics; 2023 Sep; 24(1):335. PubMed ID: 37697297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations.
    Wang W; Han P; Li Z; Nie R; Wang K; Wang L; Liao H
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):289-300. PubMed ID: 38231821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.