These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 36241973)
21. Bootstrap vs asymptotic variance estimation when using propensity score weighting with continuous and binary outcomes. Austin PC Stat Med; 2022 Sep; 41(22):4426-4443. PubMed ID: 35841200 [TBL] [Abstract][Full Text] [Related]
22. Standard errors and confidence intervals for correlations corrected for indirect range restriction: A simulation study comparing analytic and bootstrap methods. Kennet-Cohen T; Kleper D; Turvall E Br J Math Stat Psychol; 2018 Feb; 71(1):39-59. PubMed ID: 28631350 [TBL] [Abstract][Full Text] [Related]
24. Comparing a multivariate response Bayesian random effects logistic regression model with a latent variable item response theory model for provider profiling on multiple binary indicators simultaneously. Austin PC; Lee DS; Leckie G Stat Med; 2020 Apr; 39(9):1390-1406. PubMed ID: 32043653 [TBL] [Abstract][Full Text] [Related]
25. Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation. Jung K; Lee J; Gupta V; Cho G Front Psychol; 2019; 10():2215. PubMed ID: 31681066 [TBL] [Abstract][Full Text] [Related]
26. The psychometric function: II. Bootstrap-based confidence intervals and sampling. Wichmann FA; Hill NJ Percept Psychophys; 2001 Nov; 63(8):1314-29. PubMed ID: 11800459 [TBL] [Abstract][Full Text] [Related]
27. Bootstrap estimation of diagnostic accuracy with patient-clustered data. Rutter CM Acad Radiol; 2000 Jun; 7(6):413-9. PubMed ID: 10845400 [TBL] [Abstract][Full Text] [Related]
28. Confidence intervals and sample size planning for optimal cutpoints. Thiele C; Hirschfeld G PLoS One; 2023; 18(1):e0279693. PubMed ID: 36595525 [TBL] [Abstract][Full Text] [Related]
29. Bootstrap standard error and confidence intervals for the correlation corrected for range restriction: a simulation study. Chan W; Chan DW Psychol Methods; 2004 Sep; 9(3):369-85. PubMed ID: 15355154 [TBL] [Abstract][Full Text] [Related]
30. Empirical Bayes estimation of random effects parameters in mixed effects logistic regression models. Ten Have TR; Localio AR Biometrics; 1999 Dec; 55(4):1022-9. PubMed ID: 11315043 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of the type I error rate when using parametric bootstrap analysis of a cluster randomized controlled trial with binary outcomes and a small number of clusters. Golzarri-Arroyo L; Dickinson SL; Jamshidi-Naeini Y; Zoh RS; Brown AW; Owora AH; Li P; Oakes JM; Allison DB Comput Methods Programs Biomed; 2022 Mar; 215():106654. PubMed ID: 35093646 [TBL] [Abstract][Full Text] [Related]
33. Confidence intervals for the common intraclass correlation in the analysis of clustered binary responses. Saha KK; Wang S J Biopharm Stat; 2018; 28(4):682-697. PubMed ID: 28992422 [TBL] [Abstract][Full Text] [Related]
34. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times. Xiao Y; Abrahamowicz M Stat Med; 2010 Mar; 29(7-8):915-23. PubMed ID: 20213705 [TBL] [Abstract][Full Text] [Related]
35. Bootstrap confidence intervals for principal covariates regression. Giordani P; Kiers HAL Br J Math Stat Psychol; 2021 Nov; 74(3):541-566. PubMed ID: 33629738 [TBL] [Abstract][Full Text] [Related]
36. Confidence intervals for cost-effectiveness ratios: a comparison of four methods. Polsky D; Glick HA; Willke R; Schulman K Health Econ; 1997; 6(3):243-52. PubMed ID: 9226142 [TBL] [Abstract][Full Text] [Related]
37. A comparison of confidence interval methods for the intraclass correlation coefficient in cluster randomized trials. Ukoumunne OC Stat Med; 2002 Dec; 21(24):3757-74. PubMed ID: 12483765 [TBL] [Abstract][Full Text] [Related]
38. Confidence intervals for distinguishing ordinal and disordinal interactions in multiple regression. Lee S; Lei MK; Brody GH Psychol Methods; 2015 Jun; 20(2):245-58. PubMed ID: 25844629 [TBL] [Abstract][Full Text] [Related]
39. Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: A use of bootstrap standard error. Yafune A; Ishiguro M Stat Med; 1999 Mar; 18(5):581-99. PubMed ID: 10209813 [TBL] [Abstract][Full Text] [Related]