These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36242115)

  • 1. Broadband high-performance terahertz polarizer based on a dense array of 5 nm gap slit antennas.
    Kim S; Kim D; Lee Y; Lee G; Jeong J; Lee D; Kim DS
    Opt Express; 2022 Aug; 30(17):30038-30046. PubMed ID: 36242115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High extinction ratio terahertz broadband polarizer based on the aligned Ni nanowire arrays.
    Xiang W; Huang X; Li D; Zhou Q; Guo H; Li J
    Opt Lett; 2020 Apr; 45(7):1978-1981. PubMed ID: 32236046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High extinction ratio terahertz wire-grid polarizers with connecting bridges on quartz substrates.
    Cetnar JS; Vangala S; Zhang W; Pfeiffer C; Brown ER; Guo J
    Opt Lett; 2017 Mar; 42(5):955-958. PubMed ID: 28248340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz wire-grid polarizers with micrometer-pitch Al gratings.
    Yamada I; Takano K; Hangyo M; Saito M; Watanabe W
    Opt Lett; 2009 Feb; 34(3):274-6. PubMed ID: 19183629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz wire grid polarizer fabricated by imprinting porous silicon.
    Imakita K; Kamada T; Fujii M; Aoki K; Mizuhata M; Hayashi S
    Opt Lett; 2013 Dec; 38(23):5067-70. PubMed ID: 24281511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme-sensitivity terahertz polarizer inspired by an anisotropic cut-through metamaterial.
    Suzuki T; Nagai M; Kishi Y
    Opt Lett; 2016 Jan; 41(2):325-8. PubMed ID: 26766705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition from a spectrum filter to a polarizer in a metallic nano-slit array.
    Zhou J; Guo LJ
    Sci Rep; 2014 Jan; 4():3614. PubMed ID: 24402443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-grating polarizer for terahertz radiation with high extinction ratio.
    Sun L; Lv ZH; Wu W; Liu WT; Yuan JM
    Appl Opt; 2010 Apr; 49(11):2066-71. PubMed ID: 20390006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust terahertz polarizers with high transmittance at selected frequencies through Si wafer bonding technologies.
    Yu TY; Chi NC; Tsai HC; Wang SY; Luo CW; Chen KN
    Opt Lett; 2017 Dec; 42(23):4917-4920. PubMed ID: 29216144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks.
    Ren L; Pint CL; Arikawa T; Takeya K; Kawayama I; Tonouchi M; Hauge RH; Kono J
    Nano Lett; 2012 Feb; 12(2):787-90. PubMed ID: 22268490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure.
    Huang Z; Parrott EP; Park H; Chan HP; Pickwell-MacPherson E
    Opt Lett; 2014 Feb; 39(4):793-6. PubMed ID: 24562208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable broadband terahertz polarizer using graphene-metal hybrid metasurface.
    Meng K; Park SJ; Li LH; Bacon DR; Chen L; Chae K; Park JY; Burnett AD; Linfield EH; Davies AG; Cunningham JE
    Opt Express; 2019 Nov; 27(23):33768-33778. PubMed ID: 31878438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible terahertz wire grid polarizer with high extinction ratio and low loss.
    Ferraro A; Zografopoulos DC; Missori M; Peccianti M; Caputo R; Beccherelli R
    Opt Lett; 2016 May; 41(9):2009-12. PubMed ID: 27128061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of 3-D printed conductive polymer structures for THz polarization control.
    Hernandez-Serrano AI; Sun Q; Bishop EG; Griffiths ER; Purssell CP; Leigh SJ; Lloyd-Hughes J; Pickwell-MacPherson E
    Opt Express; 2019 Apr; 27(8):11635-11641. PubMed ID: 31053006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and analysis of a nano-triangular wave-shaped polarizer.
    Hokari R; Takakuwa K; Shiomoto K; Kuwano G; Kurihara K
    Sci Rep; 2023 Aug; 13(1):13387. PubMed ID: 37591973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Metamaterial Quarter-Wave Plate and Its Application in Blocking the Backward Reflection of Terahertz Waves.
    Sun J; Liu YQ; Li J; Zhang X; Cai H; Zhu X; Yin H
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmittance enhancement of a wire-grid polarizer by antireflection coating.
    Yamada I; Kintaka K; Nishii J; Akioka S; Yamagishi Y; Saito M
    Appl Opt; 2009 Jan; 48(2):316-20. PubMed ID: 19137042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of spatial incident angles on polarizer with a slit in grooved metal slabs for terahertz communication.
    Yuan M; Zhao D; Zhang Y; Cai B; Chen L; Zhu Y
    Appl Opt; 2015 Feb; 54(6):1363-8. PubMed ID: 25968200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires.
    Baig SA; Boland JL; Damry DA; Tan HH; Jagadish C; Joyce HJ; Johnston MB
    Nano Lett; 2017 Apr; 17(4):2603-2610. PubMed ID: 28334532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions.
    Yang ZY; Lu YF
    Opt Express; 2007 Jul; 15(15):9510-9. PubMed ID: 19547298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.