BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36242216)

  • 21. Nested antiresonant nodeless hollow core fiber.
    Poletti F
    Opt Express; 2014 Oct; 22(20):23807-28. PubMed ID: 25321960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions.
    Jaworski P; Kozioł P; Krzempek K; Wu D; Yu F; Bojęś P; Dudzik G; Liao M; Abramski K; Knight J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling and performance evaluation of in-line Fabry-Perot photothermal gas sensors with hollow-core optical fibers.
    Bao H; Hong Y; Jin W; Ho HL; Wang C; Gao S; Wang Y; Wang P
    Opt Express; 2020 Feb; 28(4):5423-5435. PubMed ID: 32121763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors.
    Redding B; Murray MJ; Donko A; Beresna M; Masoudi A; Brambilla G
    Opt Express; 2020 May; 28(10):14638-14647. PubMed ID: 32403501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review.
    Nikodem M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32916799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of reduced backscattering noise in laser-driven fiber optic gyroscopes.
    Lloyd SW; Dangui V; Digonnet MJ; Fan S; Kino GS
    Opt Lett; 2010 Jan; 35(2):121-3. PubMed ID: 20081941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Second-Order Vector Mode Propagation in Hollow-Core Antiresonant Fibers.
    Li L; Xiao L
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31181595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Microchannels in a Nodeless Antiresonant Hollow-Core Fiber Using Femtosecond Laser Pulses.
    Kozioł P; Jaworski P; Krzempek K; Hoppe V; Dudzik G; Yu F; Wu D; Liao M; Knight J; Abramski K
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gap design to enable functionalities into nested antiresonant nodeless fiber based systems.
    Zhong A; Ding M; Dousek D; Suslov D; Zvánovec S; Poletti F; Richardson DJ; Slavík R; Komanec M
    Opt Express; 2023 Apr; 31(9):15035-15044. PubMed ID: 37157354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of fiber parameters of pure silica core fibers based on the OTDR technique.
    Ohashi M; Nakamura A; Oda T; Hayakawa K; Koshikiya Y
    Opt Express; 2021 May; 29(10):15078-15088. PubMed ID: 33985215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification.
    Février S; Beaudou B; Viale P
    Opt Express; 2010 Mar; 18(5):5142-50. PubMed ID: 20389527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Double Antiresonance Fiber Sensor for the Simultaneous Measurement of Curvature and Temperature.
    Pereira D; Bierlich J; Kobelke J; Ferreira MS
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-nested antiresonant hollow-core fiber with ultralow loss and single-mode guidance.
    Wang Y; Chang W
    Opt Express; 2023 May; 31(11):18250-18264. PubMed ID: 37381539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-destructive characterization of nested and double nested antiresonant nodeless fiber microstructure geometry.
    Budd L; Numkam Fokoua E; Taranta A; Poletti F
    Opt Express; 2023 Oct; 31(22):36928-36939. PubMed ID: 38017832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical Modelling of a Distributed Acoustic Sensor Based on Ultra-Low Loss-Enhanced Backscattering Fibers.
    van Putten LD; Masoudi A; Snook J; Brambilla G
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small-core hollow-core nested antiresonant nodeless fiber with semi-circular tubes.
    Zhu Y; Li W; Gao F; Xu X; Song N
    Opt Express; 2022 Jun; 30(12):20373-20388. PubMed ID: 36224784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High SNR Φ-OTDR with Multi-Transverse Modes Heterodyne Matched-Filtering Technology.
    Liu Y; Yang J; Wu B; Lu B; Shuai L; Wang Z; Ye L; Ying K; Ye Q; Qu R; Cai H
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mid-infrared optical frequency comb spectroscopy using an all-silica antiresonant hollow-core fiber.
    Tomaszewska-Rolla D; Jaworski P; Wu D; Yu F; Foltynowicz A; Krzempek K; Soboń G
    Opt Express; 2024 Mar; 32(6):10679-10689. PubMed ID: 38571273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hollow antiresonant fibers with reduced attenuation.
    Belardi W; Knight JC
    Opt Lett; 2014 Apr; 39(7):1853-6. PubMed ID: 24686622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of embedded-core hollow optical fiber.
    Guan C; Tian F; Dai Q; Yuan L
    Opt Express; 2011 Oct; 19(21):20069-78. PubMed ID: 21997017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.