These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36242277)

  • 1. Laser shock peening of tungsten and its dependency on polarisation of light for induced compressive stresses.
    Banerjee S; Spear J; Dalton PJ
    Opt Express; 2022 Aug; 30(18):32084-32096. PubMed ID: 36242277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement and absorption layer free nanosecond laser shock peening of tungsten and its alloy.
    Banerjee S; Spear J
    Opt Lett; 2022 Sep; 47(18):4736-4739. PubMed ID: 36107075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening.
    Gujba AK; Medraj M
    Materials (Basel); 2014 Dec; 7(12):7925-7974. PubMed ID: 28788284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Study on Laser Shock Peening of Pure Al Correlating with Laser Shock Wave.
    Wang M; Wang C; Tao X; Zhou Y
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser Shock Peening of SiCp/2009Al Composites: Microstructural Evolution, Residual Stress and Fatigue Behavior.
    Sun R; Cao Z; Zhang Y; Zhang H; Yu Y; Che Z; Wu J; Zou S; Guo W
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological and mechanical response of laser shock peening orthopaedic titanium alloy (Ti-6Al-7Nb).
    Shen X; Shukla P; Nayak S; Gopal V; Subramanian P; Sarah Benjamin A; Kalainathan S
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1169-1187. PubMed ID: 35735136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.
    Xu JC; Wang L; Xu GS; Luo GN; Yao DM; Li Q; Cao L; Chen L; Zhang W; Liu SC; Wang HQ; Jia MN; Feng W; Deng GZ; Hu LQ; Wan BN; Li J; Sun YW; Guo HY
    Rev Sci Instrum; 2016 Aug; 87(8):083504. PubMed ID: 27587120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening.
    Busi M; Kalentics N; Morgano M; Griffiths S; Tremsin AS; Shinohara T; Logé R; Leinenbach C; Strobl M
    Sci Rep; 2021 Jul; 11(1):14919. PubMed ID: 34290334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact, diode-pumped, unstable cavity Yb:YAG laser and its application in laser shock peening.
    Körner J; Zulić S; Reiter J; Lenski M; Hein J; Bödefeld R; Rostohar D; Mocek T; Kaluza MC
    Opt Express; 2021 May; 29(10):15724-15732. PubMed ID: 33985268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual Stress Enhancement by Laser Shock Treatment in Chromium-Alloyed Steam Turbine Blades.
    Fameso F; Desai D; Kok S; Armfield D; Newby M
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Prediction of the Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Ti-6Al-4V Titanium Alloy.
    Ouyang P; Luo X; Dong Z; Zhang S
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Simulation on Laser Shock Peening of B
    Wang X; Chen B; Zhang F; Liu L; Xu S; Mei H; Lai X; Ren L
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Laser Shock Peening on Microstructure and Properties of Ti-6Al-4V Titanium Alloy Fabricated via Selective Laser Melting.
    Lan L; Xin R; Jin X; Gao S; He B; Rong Y; Min N
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Microstructure, Residual Stress and Fatigue Performance of Laser Metal Deposited TC17 Alloy Subjected to Laser Shock Peening.
    An Z; He W; Zhou X; Zhou L; Nie X
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing Parameters with FEM Model for 20CrMnTi Laser Shocking.
    Sun J; Li J; Chen X; Xu Z; Lin Y; Jiang Q; Chen J; Li Y
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Life Enhancement of Titanium Alloy by the Development of Nano/Micron Surface Layer Using Laser Peening.
    Rajan SS; Swaroop S; Manivasagam G; Rao MN
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7064-7073. PubMed ID: 31039859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using an artificial neural network to predict the residual stress induced by laser shock processing.
    Wu J; Liu X; Qiao H; Zhao Y; Hu X; Yang Y; Zhao J
    Appl Opt; 2021 Apr; 60(11):3114-3121. PubMed ID: 33983208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation Mechanism and Control Method of Residual Stress Profile by Laser Shock Peening in Thin Titanium Alloy Component.
    Nie X; Tang Y; Zhao F; Yan L; Wu H; Wei C; He W
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Fatigue Life of GH3039 Superalloy by Laser Shock Peening.
    Tang Y; Ge M; Zhang Y; Wang T; Zhou W
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact on Mechanical Properties and Microstructural Response of Nickel-Based Superalloy GH4169 Subjected to Warm Laser Shock Peening.
    Lu Y; Yang Y; Zhao J; Yang Y; Qiao H; Hu X; Wu J; Sun B
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.