These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36242397)

  • 1. Pushing the colorimetry camera-based fluorescence microscopy to low light imaging by denoising and dye combination.
    Zhang Z; Kuang W; Shi B; Huang ZL
    Opt Express; 2022 Sep; 30(19):33680-33696. PubMed ID: 36242397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-shot multi-color fluorescence microscopy via a colorimetry camera.
    Wang Y; Kuang W; Huang ZL
    Opt Lett; 2022 May; 47(10):2514-2517. PubMed ID: 35561389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of color video demosaicking in temporal domain.
    Wu X; Zhang L
    IEEE Trans Image Process; 2006 Oct; 15(10):3138-51. PubMed ID: 17022276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and accurate sCMOS noise correction for fluorescence microscopy.
    Mandracchia B; Hua X; Guo C; Son J; Urner T; Jia S
    Nat Commun; 2020 Jan; 11(1):94. PubMed ID: 31901080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary tree-based generic demosaicking algorithm for multispectral filter arrays.
    Miao L; Qi H; Ramanath R; Snyder WE
    IEEE Trans Image Process; 2006 Nov; 15(11):3550-8. PubMed ID: 17076412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-complexity joint color demosaicking and zooming algorithm for digital camera.
    Chung KH; Chan YH
    IEEE Trans Image Process; 2007 Jul; 16(7):1705-15. PubMed ID: 17605370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regularization approaches to demosaicking.
    Menon D; Calvagno G
    IEEE Trans Image Process; 2009 Oct; 18(10):2209-20. PubMed ID: 19527958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution microscopy.
    Diekmann R; Deschamps J; Li Y; Deguchi T; Tschanz A; Kahnwald M; Matti U; Ries J
    Nat Commun; 2022 Jun; 13(1):3362. PubMed ID: 35690614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative performance evaluation of a back-illuminated sCMOS camera with 95% QE for super-resolution localization microscopy.
    Wang Y; Zhao L; Hu Z; Wang Y; Zhao Z; Li L; Huang ZL
    Cytometry A; 2017 Dec; 91(12):1175-1183. PubMed ID: 29165899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Color reproduction from noisy CFA data of single sensor digital cameras.
    Zhang L; Wu X; Zhang D
    IEEE Trans Image Process; 2007 Sep; 16(9):2184-97. PubMed ID: 17784592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-Encoded Multicolor Fluorescence Imaging with Single-Photon-Counting Color-Blind Detection.
    Garbacik ET; Sanz-Paz M; Borgman KJE; Campelo F; Garcia-Parajo MF
    Biophys J; 2018 Aug; 115(4):725-736. PubMed ID: 30037496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-spectral color filter array design for optimal image recovery.
    Hirakawa K; Wolfe PJ
    IEEE Trans Image Process; 2008 Oct; 17(10):1876-90. PubMed ID: 18784035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous multi-spectral, single-photon fluorescence imaging using a plasmonic colour filter array.
    Connolly PWR; Valli J; Shah YD; Altmann Y; Grant J; Accarino C; Rickman C; Cumming DRS; Buller GS
    J Biophotonics; 2021 Jul; 14(7):e202000505. PubMed ID: 33829644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Color Two-Photon Microscopic Imaging Based on a Single-Wavelength Excitation.
    Yan W; Huang Y; Wang L; Li J; Guo Y; Yang Z; Qu J
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bionic Birdlike Imaging Using a Multi-Hyperuniform LED Array.
    Zhao XY; Li LJ; Cao L; Sun MJ
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34198486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras.
    Long F; Zeng S; Huang ZL
    Opt Express; 2012 Jul; 20(16):17741-59. PubMed ID: 23038326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demosaicking by alternating projections: theory and fast one-step implementation.
    Lu YM; Karzand M; Vetterli M
    IEEE Trans Image Process; 2010 Aug; 19(8):2085-98. PubMed ID: 20236886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Color image acquisition using a monochrome camera and standard fluorescence filter cubes.
    Weber GF; Menko AS
    Biotechniques; 2005 Jan; 38(1):52, 54, 56. PubMed ID: 15679085
    [No Abstract]   [Full Text] [Related]  

  • 19. Geometry-based demosaicking.
    Ferradans S; Bertalmío M; Caselles V
    IEEE Trans Image Process; 2009 Mar; 18(3):665-70. PubMed ID: 19188122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization-based super-resolution microscopy with an sCMOS camera.
    Huang ZL; Zhu H; Long F; Ma H; Qin L; Liu Y; Ding J; Zhang Z; Luo Q; Zeng S
    Opt Express; 2011 Sep; 19(20):19156-68. PubMed ID: 21996858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.