BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36242442)

  • 1. Enhanced spectral-domain optical coherence tomography (SD-OCT) using in situ ultrasonic virtual tunable optical waveguides.
    Karimi Y; Yang H; Liu J; Park BH; Chamanzar M
    Opt Express; 2022 Sep; 30(19):34256-34275. PubMed ID: 36242442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming the tradeoff between confinement and focal distance using virtual ultrasonic optical waveguides.
    Scopelliti MG; Huang H; Pediredla A; Narasimhan SG; Gkioulekas I; Chamanzar M
    Opt Express; 2020 Dec; 28(25):37459-37473. PubMed ID: 33379580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth.
    Yi L; Sun L; Ding W
    J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29076306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral image reconstruction of optical coherence tomography using one-dimensional deep deconvolution network.
    Lee M; Bang H; Lee E; Won Y; Kim K; Park S; Yoo H; Lee S
    Lasers Surg Med; 2022 Aug; 54(6):895-906. PubMed ID: 35366377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography.
    Zhang QQ; Wang JG; Wang MW; Bu J; Zhu SW; Wang R; Gao BZ; Yuan XC
    J Opt; 2011 May; 13(5):. PubMed ID: 24353894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range.
    Lee KS; Rolland JP
    Opt Lett; 2008 Aug; 33(15):1696-8. PubMed ID: 18670507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography.
    Wang W; Wang G; Ma J; Cheng L; Guan BO
    Opt Express; 2019 Jan; 27(2):358-366. PubMed ID: 30696123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep imaging with 1.3 µm dual-axis optical coherence tomography and an enhanced depth of focus.
    Jelly ET; Zhao Y; Chu KK; Price H; Crose M; Steelman ZA; Wax A
    Biomed Opt Express; 2021 Dec; 12(12):7689-7702. PubMed ID: 35003860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improve depth of field of optical coherence tomography using finite energy Airy beam.
    Zhang M; Ren Z; Yu P
    Opt Lett; 2019 Jun; 44(12):3158-3161. PubMed ID: 31199405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a deviated focusing-based optical coherence microscope with a variable depth of focus for high-resolution imaging.
    Saleah SA; Seong D; Wijesinghe RE; Han S; Kim S; Jeon M; Kim J
    Opt Express; 2023 Jan; 31(2):1258-1268. PubMed ID: 36785165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoperative OCT for surgical microscope with sensitivity drop and depth of focus correction based on variable focus and dynamic reference.
    Kim JH; Shin JG; Choi ES; Eom TJ
    Opt Express; 2019 Feb; 27(3):3448-3459. PubMed ID: 30732365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth extension and sidelobe suppression in optical coherence tomography using pupil filters.
    Yu X; Liu X; Gu J; Cui D; Wu J; Liu L
    Opt Express; 2014 Nov; 22(22):26956-66. PubMed ID: 25401845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple aperture synthetic optical coherence tomography for biological tissue imaging.
    Bo E; Ge X; Wang L; Wu X; Luo Y; Chen S; Chen S; Liang H; Ni G; Yu X; Liu L
    Opt Express; 2018 Jan; 26(2):772-780. PubMed ID: 29401957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe.
    Qiu J; Han T; Liu Z; Meng J; Ding Z
    Opt Lett; 2020 Feb; 45(4):976-979. PubMed ID: 32058521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically tunable lens integrated with optical coherence tomography angiography for cerebral blood flow imaging in deep cortical layers in mice.
    Li Y; Tang P; Song S; Rakymzhan A; Wang RK
    Opt Lett; 2019 Oct; 44(20):5037-5040. PubMed ID: 31613257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-needle-like focus synthesized by optical coherence tomography.
    Bao W; Ding Z; Qiu J; Shen Y; Li P; Chen Z
    Opt Lett; 2017 Apr; 42(7):1385-1388. PubMed ID: 28362775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
    Coquoz S; Bouwens A; Marchand PJ; Extermann J; Lasser T
    Opt Express; 2017 Nov; 25(24):30807-30819. PubMed ID: 29221107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of contact lens on optical coherence tomography imaging of rodent retina.
    Liu X; Wang CH; Dai C; Camesa A; Zhang HF; Jiao S
    Curr Eye Res; 2013 Dec; 38(12):1235-40. PubMed ID: 24000814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking.
    Xie T; Guo S; Chen Z; Mukai D; Brenner M
    Opt Express; 2006 Apr; 14(8):3238-46. PubMed ID: 19516465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.