These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 36242462)
1. Generation of temporal fading envelope sequences for the FSOC channel based on atmospheric turbulence optical parameters. Yao H; Hao Q; Chen C; Li L; Chang Y; Du S; Liu X; Tong S; Liu Z; Jia S; Jiang H Opt Express; 2022 Sep; 30(19):34519-34532. PubMed ID: 36242462 [TBL] [Abstract][Full Text] [Related]
2. Optical adaptive power control based on atmospheric channel reciprocity for mitigating turbulence disturbances in free-space optics communication. Yao H; Wang W; Zhou C; Cao J; Hao Q; Chen C; Dong K; Tong S; Liu Z; Liu X; Jiang H Opt Express; 2023 Oct; 31(22):36992-37010. PubMed ID: 38017837 [TBL] [Abstract][Full Text] [Related]
3. BER performance of an FSOC system over atmospheric turbulence channels based on computational temporal ghost imaging. Huang Z; Zhou L; Huang X; Qin H; Zou X; Fu X; Bai Y J Opt Soc Am A Opt Image Sci Vis; 2023 Aug; 40(8):1478-1483. PubMed ID: 37707102 [TBL] [Abstract][Full Text] [Related]
4. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence. Wang Y; Xu H; Li D; Wang R; Jin C; Yin X; Gao S; Mu Q; Xuan L; Cao Z Sci Rep; 2018 Jan; 8(1):1124. PubMed ID: 29348561 [TBL] [Abstract][Full Text] [Related]
5. Prediction of data stream parameters in atmospheric turbulent wireless communication links. Tiker A; Yarkoni N; Blaunstein N; Zilberman A; Kopeika N Appl Opt; 2007 Jan; 46(2):190-9. PubMed ID: 17268564 [TBL] [Abstract][Full Text] [Related]
6. Performance investigation of the polar coded FSO communication system over turbulence channel. Fang J; Bi M; Xiao S; Yang G; Li C; Liu L; Zhang Y; Huang T; Hu W Appl Opt; 2018 Sep; 57(25):7378-7384. PubMed ID: 30182959 [TBL] [Abstract][Full Text] [Related]
7. Performance analysis of multiple-beam WDM free space laser-communication system using homodyne detection approach. Gupta YK; Goel A Heliyon; 2023 Feb; 9(2):e13325. PubMed ID: 36755596 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and experimental studies of turbo product code with time diversity in free space optical communication. Han Y; Dang A; Ren Y; Tang J; Guo H Opt Express; 2010 Dec; 18(26):26978-88. PubMed ID: 21196974 [TBL] [Abstract][Full Text] [Related]
9. Performance evaluation of receive-diversity free-space optical communications over correlated Gamma-Gamma fading channels. Yang G; Khalighi MA; Ghassemlooy Z; Bourennane S Appl Opt; 2013 Aug; 52(24):5903-11. PubMed ID: 24084990 [TBL] [Abstract][Full Text] [Related]
10. Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links. Toyoshima M; Takenaka H; Takayama Y Opt Express; 2011 Aug; 19(17):15965-75. PubMed ID: 21934960 [TBL] [Abstract][Full Text] [Related]
11. Adaptive decision threshold algorithm based on a sliding window to reduce BER of free-space optical communication systems. Ying R; Zheng Y; Wei S; He Y; Xie Z; He M; Wang W Appl Opt; 2024 May; 63(13):3625-3635. PubMed ID: 38856548 [TBL] [Abstract][Full Text] [Related]
12. Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors. García-Zambrana A; Castillo-Vázquez B; Castillo-Vázquez C Opt Express; 2012 Jan; 20(3):2096-109. PubMed ID: 22330450 [TBL] [Abstract][Full Text] [Related]
13. Near-surface atmospheric turbulence profile measuring technology based on an airship-mounted laser communication system. Wang T; Zhao X; Song Y; Wang J; Luan Y; Li Y; Chang S Appl Opt; 2022 Jan; 61(2):439-445. PubMed ID: 35200881 [TBL] [Abstract][Full Text] [Related]
14. Influence of detection noise on the maximum likelihood estimation of atmospheric turbulence fading parameters. Chen D; Gao Y; Wang H; Liu Y; Cao Y Appl Opt; 2022 Aug; 61(24):7265-7272. PubMed ID: 36256349 [TBL] [Abstract][Full Text] [Related]
15. Performance of optical space shift keying under jamming. Chauhan I; Paul P; Bhatnagar MR; Nebhen J Appl Opt; 2021 Mar; 60(7):1856-1863. PubMed ID: 33690274 [TBL] [Abstract][Full Text] [Related]
16. M-ary phase-shift keying-based single-input-multiple-output free space optical communication system with pointing errors over a gamma-gamma fading channel. Malik S; Sahu PK Appl Opt; 2020 Jan; 59(1):59-67. PubMed ID: 32225291 [TBL] [Abstract][Full Text] [Related]
17. Channel correlation and BER performance analysis of coherent optical communication systems with receive diversity over moderate-to-strong non-Kolmogorov turbulence. Fu Y; Ma J; Tan L; Yu S; Lu G Appl Opt; 2018 Apr; 57(11):2890-2899. PubMed ID: 29714290 [TBL] [Abstract][Full Text] [Related]
18. Performance analysis of optical spatial modulation over a correlated gamma-gamma turbulence channel. Yu S; Geng C; Zhong J; Kang D Appl Opt; 2022 Mar; 61(8):2025-2035. PubMed ID: 35297895 [TBL] [Abstract][Full Text] [Related]
19. Adaptive selective relaying in cooperative free-space optical systems over atmospheric turbulence and misalignment fading channels. Boluda-Ruiz R; García-Zambrana A; Castillo-Vázquez C; Castillo-Vázquez B Opt Express; 2014 Jun; 22(13):16629-44. PubMed ID: 24977911 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the FSO communication system using adaptive and MIMO MPPM with pointing errors and an atmospheric turbulence channel. Malik S; Sahu PK Appl Opt; 2021 Feb; 60(6):1719-1728. PubMed ID: 33690510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]