These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36242473)

  • 1. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements.
    Chen S; Lin J; He Z; Li Y; Su Y; Wu ST
    Opt Express; 2022 Sep; 30(19):34655-34664. PubMed ID: 36242473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatic aberration correction in bi-focal augmented reality display by the multi-layer Pancharatnam-Berry phase lens.
    Ma Y; Zhang W; Liu Y; Tian T; Luo D
    Opt Express; 2022 May; 30(11):18772-18780. PubMed ID: 36221671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded transflective liquid crystal planar lenses enable multi-plane augmented reality.
    Ye X; Fan F; Wen S
    Opt Lett; 2023 Nov; 48(22):5919-5922. PubMed ID: 37966752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid crystal lens set in augmented reality systems and virtual reality systems for rapidly varifocal images and vision correction.
    Lin YH; Huang TW; Huang HH; Wang YJ
    Opt Express; 2022 Jun; 30(13):22768-22778. PubMed ID: 36224967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.
    Zhan T; Lee YH; Wu ST
    Opt Express; 2018 Feb; 26(4):4863-4872. PubMed ID: 29475331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorful multi-plane augmented reality display with dynamically tunable reflective Pancharatnam-Berry phase lens.
    Yan X; Zhu J; Liu M; Liu Y; Luo D
    Opt Express; 2024 Mar; 32(6):9161-9170. PubMed ID: 38571155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications.
    Yin K; Hsiang EL; Zou J; Li Y; Yang Z; Yang Q; Lai PC; Lin CL; Wu ST
    Light Sci Appl; 2022 May; 11(1):161. PubMed ID: 35637183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correcting the wavelength-induced phase deviation of Pancharatnam-Berry lenses.
    Luo Z; Zou J; Zhao E; Rao Y; Wu ST
    Opt Express; 2022 Sep; 30(20):36644-36650. PubMed ID: 36258588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality.
    Shin D; Kim C; Koo G; Hyub Won Y
    Opt Express; 2020 Feb; 28(4):5602-5616. PubMed ID: 32121777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal.
    Li S; Liu Y; Li Y; Liu S; Chen S; Su Y
    Opt Express; 2019 Aug; 27(16):22522-22531. PubMed ID: 31510543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses.
    Wilson A; Hua H
    Opt Express; 2019 May; 27(11):15627-15637. PubMed ID: 31163757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEMS-actuated metasurface Alvarez lens.
    Han Z; Colburn S; Majumdar A; Böhringer KF
    Microsyst Nanoeng; 2020; 6():79. PubMed ID: 34567689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate measurement of virtual image distance for near-eye displays based on auto-focusing.
    Xu H; Tabata S; Liang H; Wang L; Ishikawa M
    Appl Opt; 2022 Oct; 61(30):9093-9098. PubMed ID: 36607038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmented reality near-eye display using Pancharatnam-Berry phase lenses.
    Moon S; Lee CK; Nam SW; Jang C; Lee GY; Seo W; Sung G; Lee HS; Lee B
    Sci Rep; 2019 Apr; 9(1):6616. PubMed ID: 31036828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Varifocal augmented reality adopting electrically tunable uniaxial plane-parallel plates.
    Wang YJ; Lin YH; Cakmakci O; Reshetnyak V
    Opt Express; 2020 Jul; 28(15):23023-23036. PubMed ID: 32752553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue-free visual perception of high-density super-multiview augmented reality images.
    Lim S; Jeon H; Jung M; Lee C; Moon W; Kim K; Kim H; Hahn J
    Sci Rep; 2022 Feb; 12(1):2959. PubMed ID: 35194078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-depth augmented reality display with reflective polarization-dependent lenses.
    Li Y; Yang Q; Xiong J; Li K; Wu ST
    Opt Express; 2021 Sep; 29(20):31478-31487. PubMed ID: 34615239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens.
    Chen HS; Wang YJ; Chen PJ; Lin YH
    Opt Express; 2015 Nov; 23(22):28154-62. PubMed ID: 26561086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.