These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36242483)

  • 1. Ultra-broadband and completely modulated absorption enhancement of monolayer graphene in a near-infrared region.
    Yan Z; Kong L; Tang C; Deng J; Gu P; Chen J; Wang X; Yi Z; Zhu M
    Opt Express; 2022 Sep; 30(19):34787-34796. PubMed ID: 36242483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials.
    Liu B; Tang C; Chen J; Xie N; Tang H; Zhu X; Park GS
    Nanoscale Res Lett; 2018 May; 13(1):153. PubMed ID: 29767294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Optical Reflection Modulation by Coupling Interband Transition of Graphene to Magnetic Resonance in Metamaterials.
    Ji Y; Yan Z; Tang C; Chen J; Gu P; Liu B; Liu Z
    Nanoscale Res Lett; 2019 Dec; 14(1):391. PubMed ID: 31873823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically tunable graphene metamaterial with strong broadband absorption.
    Yao W; Tang L; Nong J; Wang J; Yang J; Jiang Y; Shi H; Wei X
    Nanotechnology; 2021 Feb; 32(7):075703. PubMed ID: 33096539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-narrowband light absorption enhancement of monolayer graphene from waveguide mode.
    Liu B; Yu W; Yan Z; Tang C; Chen J; Gu P; Liu Z; Huang Z
    Opt Express; 2020 Aug; 28(17):24908-24917. PubMed ID: 32907021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials.
    Liu B; Tang C; Chen J; Wang Q; Pei M; Tang H
    Opt Express; 2017 May; 25(10):12061-12068. PubMed ID: 28788759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene photodetectors with ultra-broadband and high responsivity at room temperature.
    Liu CH; Chang YC; Norris TB; Zhong Z
    Nat Nanotechnol; 2014 Apr; 9(4):273-8. PubMed ID: 24633521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide.
    Ye L; Chen X; Zhu C; Li W; Zhang Y
    Opt Express; 2020 Nov; 28(23):33948-33958. PubMed ID: 33182873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Metamaterial Embedded within Bundt Optenna for Ultra-Broadband Infrared Enhanced Absorption.
    Awad E
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bandwidth tunability of graphene absorption enhancement by hybridization of delocalized surface plasmon polaritons and localized magnetic plasmons.
    Wu Y; Nie Q; Tang C; Yan B; Liu F; Zhu M
    Discov Nano; 2024 Jan; 19(1):19. PubMed ID: 38273038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios.
    Miao J; Hu W; Guo N; Lu Z; Liu X; Liao L; Chen P; Jiang T; Wu S; Ho JC; Wang L; Chen X; Lu W
    Small; 2015 Feb; 11(8):936-42. PubMed ID: 25363206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene.
    Chen F; Cheng Y; Luo H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene controlled Brewster angle device for ultra broadband terahertz modulation.
    Chen Z; Chen X; Tao L; Chen K; Long M; Liu X; Yan K; Stantchev RI; Pickwell-MacPherson E; Xu JB
    Nat Commun; 2018 Nov; 9(1):4909. PubMed ID: 30464172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced tunable plasmonic resonance in crumpled graphene resonators loaded with gate tunable metamaterials.
    Khattak MI; Ullah Z; Al-Hasan M; Sheikh F
    Opt Express; 2020 Dec; 28(25):37860-37878. PubMed ID: 33379612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance.
    Jiang X; Wang T; Xiao S; Yan X; Cheng L
    Opt Express; 2017 Oct; 25(22):27028-27036. PubMed ID: 29092184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-sensitive near-infrared graphene photodetectors with nanopillar antennas.
    Liu Y; Huang W; Gong T; Su Y; Zhang H; He Y; Liu Z; Yu B
    Nanoscale; 2017 Nov; 9(44):17459-17464. PubMed ID: 29106432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Light Absorption Enhancement in Graphene Monolayer Resulting from the Diffraction Coupling of Surface Plasmon Polariton Resonance.
    Liu B; Yu W; Yan Z; Cai P; Gao F; Tang C; Gu P; Liu Z; Chen J
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer-graphene-based broadband and wide-angle perfect absorption structures in the near infrared.
    Fan Y; Guo C; Zhu Z; Xu W; Wu F; Yuan X; Qin S
    Sci Rep; 2018 Sep; 8(1):13709. PubMed ID: 30209289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption.
    Lobet M; Lard M; Sarrazin M; Deparis O; Henrard L
    Opt Express; 2014 May; 22(10):12678-90. PubMed ID: 24921385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.