BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36242822)

  • 21. Comparison of specific versus literature species sensitivity distributions for herbicides risk assessment.
    Larras F; Gregorio V; Bouchez A; Montuelle B; Chèvre N
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3042-52. PubMed ID: 26396014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aquatic risk assessment of a novel strobilurin fungicide: A microcosm study compared with the species sensitivity distribution approach.
    Chen L; Song Y; Tang B; Song X; Yang H; Li B; Zhao Y; Huang C; Han X; Wang S; Li Z
    Ecotoxicol Environ Saf; 2015 Oct; 120():418-27. PubMed ID: 26122735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Re-evaluation of target lipid model-derived HC5 predictions for hydrocarbons.
    McGrath JA; Fanelli CJ; Di Toro DM; Parkerton TF; Redman AD; Paumen ML; Comber M; Eadsforth CV; den Haan K
    Environ Toxicol Chem; 2018 Jun; 37(6):1579-1593. PubMed ID: 29352727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of species sensitivity distributions and estimation of HC(5) of organochlorine pesticides with five statistical approaches.
    Wang B; Yu G; Huang J; Hu H
    Ecotoxicology; 2008 Nov; 17(8):716-24. PubMed ID: 18463978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3.
    Jung JW; Kang JS; Choi J; Park JW
    Int J Environ Res Public Health; 2021 Mar; 18(7):. PubMed ID: 33807469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems.
    Maltby L; Blake N; Brock TC; van den Brink PJ
    Environ Toxicol Chem; 2005 Feb; 24(2):379-88. PubMed ID: 15719998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Illustrating a Species Sensitivity Distribution for Nano- and Microplastic Particles Using Bayesian Hierarchical Modeling.
    Takeshita KM; Iwasaki Y; Sinclair TM; Hayashi TI; Naito W
    Environ Toxicol Chem; 2022 Apr; 41(4):954-960. PubMed ID: 35226391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions.
    Moore DR; Priest CD; Galic N; Brain RA; Rodney SI
    Integr Environ Assess Manag; 2020 Jan; 16(1):53-65. PubMed ID: 31433110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria.
    Dyer SD; Versteeg DJ; Belanger SE; Chaney JG; Raimondo S; Barron MG
    Environ Sci Technol; 2008 Apr; 42(8):3076-83. PubMed ID: 18497169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute-to-chronic species sensitivity distribution extrapolation.
    Duboudin C; Ciffroy P; Magaud H
    Environ Toxicol Chem; 2004 Jul; 23(7):1774-85. PubMed ID: 15230330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dietary Toxicity Thresholds and Ecological Risks for Birds and Mammals Based on Species Sensitivity Distributions.
    Korsman JC; Schipper AM; Hendriks AJ
    Environ Sci Technol; 2016 Oct; 50(19):10644-10652. PubMed ID: 27579512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.
    Liu Y; Wu F; Mu Y; Feng C; Fang Y; Chen L; Giesy JP
    Rev Environ Contam Toxicol; 2014; 230():35-57. PubMed ID: 24609517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of species sensitivity distributions based on population or individual endpoints.
    Beaudouin R; Péry AR
    Environ Toxicol Chem; 2013 Apr; 32(5):1173-7. PubMed ID: 23377887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers.
    Park J; Lee S; Lee E; Noh H; Seo Y; Lim H; Shin H; Lee I; Jung H; Na T; Kim SD
    Ecotoxicol Environ Saf; 2019 Nov; 183():109483. PubMed ID: 31362159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecological risk assessment for xylenes and propylbenzenes in aquatic environment using a species sensitivity distribution approach.
    Li H; Meng F; Li A
    Ecotoxicol Environ Saf; 2023 Aug; 261():115106. PubMed ID: 37290297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating hazardous concentrations by an informative Bayesian approach.
    Ciffroy P; Keller M; Pasanisi A
    Environ Toxicol Chem; 2013 Mar; 32(3):602-11. PubMed ID: 23280589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of interspecific competition on species sensitivity distribution models: Analysis of plant responses to chemical stress.
    Baillard V; Sulmon C; Bittebiere AK; Mony C; Couée I; Gouesbet G; Delignette-Muller ML; Devin S; Billoir E
    Ecotoxicol Environ Saf; 2020 Sep; 200():110722. PubMed ID: 32460047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of a New Approach Method for Grouped Chemical Hazard Estimation: The Toxicity-Normalized Species Sensitivity Distribution (SSDn).
    Lambert FN; Raimondo S; Barron MG
    Environ Sci Technol; 2022 Jun; 56(12):8278-8289. PubMed ID: 35533293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Aquatic ecological risk assessment of microcystins and nitrogen pollution based on species sensitivity distribution].
    Chen J; Liu YM; Zhang JY
    Ying Yong Sheng Tai Xue Bao; 2014 Apr; 25(4):1171-80. PubMed ID: 25011315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mean Species Abundance as a Measure of Ecotoxicological Risk.
    Hoeks S; Huijbregts MAJ; Douziech M; Hendriks AJ; Oldenkamp R
    Environ Toxicol Chem; 2020 Nov; 39(11):2304-2313. PubMed ID: 32786097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.