BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36243112)

  • 1. Glucose-6-phosphate dehydrogenase exerts antistress effects independently of its enzymatic activity.
    Jin X; Li X; Li L; Zhong B; Hong Y; Niu J; Li B
    J Biol Chem; 2022 Dec; 298(12):102587. PubMed ID: 36243112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY; Ho HY; Wu PR; Chen SH; Kuypers FA; Cheng ML; Chiu DT
    Antioxid Redox Signal; 2015 Mar; 22(9):744-59. PubMed ID: 25556665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The global role of G6PD in infection and immunity.
    Shah SS; Stone EF; Francis RO; Karafin MS
    Front Immunol; 2024; 15():1393213. PubMed ID: 38938571
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    White K; Kim MJ; Ding D; Han C; Park HJ; Meneses Z; Tanokura M; Linser P; Salvi R; Someya S
    J Neurosci; 2017 Jun; 37(23):5770-5781. PubMed ID: 28473643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose 6-P Dehydrogenase-An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise.
    García-Domínguez E; Carretero A; Viña-Almunia A; Domenech-Fernandez J; Olaso-Gonzalez G; Viña J; Gomez-Cabrera MC
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver.
    Gupte RS; Floyd BC; Kozicky M; George S; Ungvari ZI; Neito V; Wolin MS; Gupte SA
    Free Radic Biol Med; 2009 Aug; 47(3):219-28. PubMed ID: 19230846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells.
    Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation.
    Hao Y; Ren T; Huang X; Li M; Lee JH; Chen Q; Liu R; Tang Q
    Redox Biol; 2023 Sep; 65():102810. PubMed ID: 37478541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.
    Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M
    Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress.
    Wang YP; Zhou LS; Zhao YZ; Wang SW; Chen LL; Liu LX; Ling ZQ; Hu FJ; Sun YP; Zhang JY; Yang C; Yang Y; Xiong Y; Guan KL; Ye D
    EMBO J; 2014 Jun; 33(12):1304-20. PubMed ID: 24769394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Small-Molecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches.
    Saddala MS; Lennikov A; Huang H
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation.
    Tuttle S; Stamato T; Perez ML; Biaglow J
    Radiat Res; 2000 Jun; 153(6):781-7. PubMed ID: 10825753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose 6-phosphate dehydrogenase and the kidney.
    Spencer NY; Stanton RC
    Curr Opin Nephrol Hypertens; 2017 Jan; 26(1):43-49. PubMed ID: 27755120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism.
    Chen L; Zhang Z; Hoshino A; Zheng HD; Morley M; Arany Z; Rabinowitz JD
    Nat Metab; 2019 Mar; 1():404-415. PubMed ID: 31058257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells.
    Sun Y; Gu X; Zhang E; Park MA; Pereira AM; Wang S; Morrison T; Li C; Blenis J; Gerbaudo VH; Henske EP; Yu JJ
    Cell Death Dis; 2014 May; 5(5):e1231. PubMed ID: 24832603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.