These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36243719)

  • 1. An ultra-high gain single-photon transistor in the microwave regime.
    Wang Z; Bao Z; Li Y; Wu Y; Cai W; Wang W; Han X; Wang J; Song Y; Sun L; Zhang H; Duan L
    Nat Commun; 2022 Oct; 13(1):6104. PubMed ID: 36243719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single-photon switch and transistor enabled by a solid-state quantum memory.
    Sun S; Kim H; Luo Z; Solomon GS; Waks E
    Science; 2018 Jul; 361(6397):57-60. PubMed ID: 29976819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circuit QED: single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n - 1 microwave photonic qubits.
    Ye B; Zheng ZF; Zhang Y; Yang CP
    Opt Express; 2018 Nov; 26(23):30689-30702. PubMed ID: 30469962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal quantum gate with hybrid qubits in circuit quantum electrodynamics.
    Yang CP; Zheng ZF; Zhang Y
    Opt Lett; 2018 Dec; 43(23):5765-5768. PubMed ID: 30499988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity.
    Hu CY
    Sci Rep; 2017 Mar; 7():45582. PubMed ID: 28349960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED.
    Hua M; Tao MJ; Deng FG
    Sci Rep; 2015 Mar; 5():9274. PubMed ID: 25787147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gated quantum dot strongly coupled to an optical microcavity.
    Najer D; Söllner I; Sekatski P; Dolique V; Löbl MC; Riedel D; Schott R; Starosielec S; Valentin SR; Wieck AD; Sangouard N; Ludwig A; Warburton RJ
    Nature; 2019 Nov; 575(7784):622-627. PubMed ID: 31634901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving photon number states in a superconducting circuit.
    Schuster DI; Houck AA; Schreier JA; Wallraff A; Gambetta JM; Blais A; Frunzio L; Majer J; Johnson B; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Feb; 445(7127):515-8. PubMed ID: 17268464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seamless High-Q Microwave Cavities for Multimode Circuit Quantum Electrodynamics.
    Chakram S; Oriani AE; Naik RK; Dixit AV; He K; Agrawal A; Kwon H; Schuster DI
    Phys Rev Lett; 2021 Sep; 127(10):107701. PubMed ID: 34533363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit.
    Kyriienko O; Sørensen AS
    Phys Rev Lett; 2016 Sep; 117(14):140503. PubMed ID: 27740803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-photon microwave photonics.
    Yang Y; Jin Y; Xiang X; Hao T; Li W; Liu T; Zhang S; Zhu N; Dong R; Li M
    Sci Bull (Beijing); 2022 Apr; 67(7):700-706. PubMed ID: 36546134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superconducting qubit to optical photon transduction.
    Mirhosseini M; Sipahigil A; Kalaee M; Painter O
    Nature; 2020 Dec; 588(7839):599-603. PubMed ID: 33361793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models.
    Bienias P; Boettcher I; Belyansky R; Kollár AJ; Gorshkov AV
    Phys Rev Lett; 2022 Jan; 128(1):013601. PubMed ID: 35061450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics.
    Scarlino P; van Woerkom DJ; Stockklauser A; Koski JV; Collodo MC; Gasparinetti S; Reichl C; Wegscheider W; Ihn T; Ensslin K; Wallraff A
    Phys Rev Lett; 2019 May; 122(20):206802. PubMed ID: 31172788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective Microwave Response for Multiple Gate-Defined Double Quantum Dots.
    Lin T; Gu SS; Xu YQ; Jiang SL; Ye SK; Wang BC; Li HO; Guo GC; Zou CL; Hu X; Cao G; Guo GP
    Nano Lett; 2023 May; 23(10):4176-4182. PubMed ID: 37133858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circuit quantum electrodynamics with a spin qubit.
    Petersson KD; McFaul LW; Schroer MD; Jung M; Taylor JM; Houck AA; Petta JR
    Nature; 2012 Oct; 490(7420):380-3. PubMed ID: 23075988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum controlled-phase-flip gate between a flying optical photon and a Rydberg atomic ensemble.
    Hao YM; Lin GW; Xia K; Lin XM; Niu YP; Gong SQ
    Sci Rep; 2015 May; 5():10005. PubMed ID: 25966448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.