BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36243974)

  • 1. Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers.
    Tao Y; Ma X; Palmer D; Schwartz R; Lu X; Osmanbeyoglu HU
    Nucleic Acids Res; 2022 Oct; 50(19):10869-10881. PubMed ID: 36243974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers.
    Osmanbeyoglu HU; Shimizu F; Rynne-Vidal A; Alonso-Curbelo D; Chen HA; Wen HY; Yeung TL; Jelinic P; Razavi P; Lowe SW; Mok SC; Chiosis G; Levine DA; Leslie CS
    Nat Commun; 2019 Sep; 10(1):4369. PubMed ID: 31554806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs.
    Osmanbeyoglu HU; Toska E; Chan C; Baselga J; Leslie CS
    Nat Commun; 2017 Jan; 8():14249. PubMed ID: 28139702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility.
    Liu Q; Hua K; Zhang X; Wong WH; Jiang R
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):496-507. PubMed ID: 35293310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking signaling pathways to transcriptional programs in breast cancer.
    Osmanbeyoglu HU; Pelossof R; Bromberg JF; Leslie CS
    Genome Res; 2014 Nov; 24(11):1869-80. PubMed ID: 25183703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From genome to phenome: Predicting multiple cancer phenotypes based on somatic genomic alterations via the genomic impact transformer.
    Tao Y; Cai C; Cohen WW; Lu X
    Pac Symp Biocomput; 2020; 25():79-90. PubMed ID: 31797588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in transcriptional networks in cancer: the role of noncoding somatic driver mutations.
    Doane AS; Elemento O
    Curr Opin Genet Dev; 2022 Aug; 75():101919. PubMed ID: 35609422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles and methods of integrative chromatin analysis in primary tissues and tumors.
    Cejas P; Long HW
    Biochim Biophys Acta Rev Cancer; 2020 Jan; 1873(1):188333. PubMed ID: 31759992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain.
    Cai WL; Greer CB; Chen JF; Arnal-Estapé A; Cao J; Yan Q; Nguyen DX
    BMC Med Genomics; 2020 Mar; 13(1):33. PubMed ID: 32143622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.
    Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J
    Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of transcriptional regulation in cancers.
    Jiang P; Freedman ML; Liu JS; Liu XS
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7731-6. PubMed ID: 26056275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells.
    Miraldi ER; Pokrovskii M; Watters A; Castro DM; De Veaux N; Hall JA; Lee JY; Ciofani M; Madar A; Carriero N; Littman DR; Bonneau R
    Genome Res; 2019 Mar; 29(3):449-463. PubMed ID: 30696696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FACER: comprehensive molecular and functional characterization of epigenetic chromatin regulators.
    Lu J; Xu J; Li J; Pan T; Bai J; Wang L; Jin X; Lin X; Zhang Y; Li Y; Sahni N; Li X
    Nucleic Acids Res; 2018 Nov; 46(19):10019-10033. PubMed ID: 30102398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional dysregulation by aberrant enhancer activation and rewiring in cancer.
    Okabe A; Kaneda A
    Cancer Sci; 2021 Jun; 112(6):2081-2088. PubMed ID: 33728716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic interpretation of non-coding variants for discovering transcriptional regulators of drug response.
    Xie X; Hanson C; Sinha S
    BMC Biol; 2019 Jul; 17(1):62. PubMed ID: 31362726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells.
    Mann-Nüttel R; Ali S; Petzsch P; Köhrer K; Alferink J; Scheu S
    BMC Genom Data; 2021 Sep; 22(1):37. PubMed ID: 34544361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing collaborative transcription regulation with a graph-based deep learning approach.
    Zhang Z; Feng F; Liu J
    PLoS Comput Biol; 2022 Jun; 18(6):e1010162. PubMed ID: 35666736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method.
    Zhang Y; Wang Z; Zeng Y; Zhou J; Zou Q
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34272562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.